Abstract
Baculovirus-derived recombinant simian virus 40 large tumour antigen (SV40 T-ag) was used to immunize BALB/c, C57Bl/6 and CB6/F1 mice and their anti-SV40 T-ag antibody responses were examined for the ability to bind synthetic peptides representing six predicted B cell epitopes on SV40 T-ag. In C57Bl/6 mice, anti-SV40 T-ag antibodies failed to bind any of the six SV40 T-ag peptides. However, the antibody responses induced in both BALB/c and CB6/F1 mice recognized synthetic peptides corresponding to two distinct epitopes (amino acids 690-708 and 660-679, respectively) associated with the carboxyl-terminal half of SV40 T-ag. In addition, murine MoAbs (BALB/c) generated to native SV40 T-ag, and previously characterized as recognizing the carboxyl-terminus of SV40 T-ag by deletion mutant analysis, also bound the synthetic peptide (residues 690-708) defining the carboxyl-terminus of SV40 T-ag. These data indicate that the antibody responses induced in BALB/c and CB6/F1 mice by immunization with baculovirus-derived recombinant SV40 T-ag are capable of recognizing sequential carboxyl-terminal epitopes on SV40 T-ag defined by peptides 690-708 and 660-679, respectively. No statistically significant differences in anti-SV40 T-ag antibody titres were observed between the three inbred mouse strains. These data suggested that the fine specificities of the anti-SV40 T-ag responses as assessed by synthetic peptide binding were different in the three inbred strains of mice examined. Finally, in vivo tumour challenge studies comparing recombinant SV40 T-ag with the two carboxyl-terminus peptide epitopes indicated that some tumour immunity was induced in BALB/c, but not CB6/F1 mice, by immunization with peptide 690-708 conjugated to a carrier protein. These studies suggest that the carboxyl-terminal region of SV40 T-ag represents a continuous sequential epitope involved in both the antibody response to SV40 T-ag and tumour immunity in BALB/c mice.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Attanasio R., Kennedy R. C., Allan J. S., Maino V. C., Buck D., Kanda P. Anti-idiotypic antibodies of a predefined specificity generated against CDR3VH synthetic peptides define a private anti-CD4 idiotype. Mol Immunol. 1990 Jun;27(6):513–522. doi: 10.1016/0161-5890(90)90070-g. [DOI] [PubMed] [Google Scholar]
- Butel J. S., Jarvis D. L. The plasma-membrane-associated form of SV40 large tumor antigen: biochemical and biological properties. Biochim Biophys Acta. 1986 Oct 28;865(2):171–195. doi: 10.1016/0304-419x(86)90027-2. [DOI] [PubMed] [Google Scholar]
- Butel J. S., Tevethia S. S., Melnick J. L. Oncogenicity and cell transformation by papovavirus SV40: the role of the viral genome. Adv Cancer Res. 1972;15:1–55. doi: 10.1016/s0065-230x(08)60371-1. [DOI] [PubMed] [Google Scholar]
- Cease K. B. Peptide component vaccine engineering: targeting the AIDS virus. Int Rev Immunol. 1990;7(1):85–107. doi: 10.3109/08830189009061767. [DOI] [PubMed] [Google Scholar]
- Deckhut A. M., Tevethia M. J., Haggerty S., Frisque R. J., Tevethia S. S. Localization of common cytotoxic T lymphocyte recognition epitopes on simian papovavirus SV40 and human papovavirus JC virus T antigens. Virology. 1991 Jul;183(1):122–132. doi: 10.1016/0042-6822(91)90125-u. [DOI] [PubMed] [Google Scholar]
- Dörries K., Loeber G., Meixensberger J. Association of polyomaviruses JC, SV40, and BK with human brain tumors. Virology. 1987 Sep;160(1):268–270. doi: 10.1016/0042-6822(87)90071-7. [DOI] [PubMed] [Google Scholar]
- Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978 Jul;15(7):429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
- Fiori M., Di Mayorca G. Occurrence of BK virus DNA in DNA obtained from certain human tumors. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4662–4666. doi: 10.1073/pnas.73.12.4662. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frisque R. J., Bream G. L., Cannella M. T. Human polyomavirus JC virus genome. J Virol. 1984 Aug;51(2):458–469. doi: 10.1128/jvi.51.2.458-469.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gurney E. G., Tamowski S., Deppert W. Antigenic binding sites of monoclonal antibodies specific for simian virus 40 large T antigen. J Virol. 1986 Mar;57(3):1168–1172. doi: 10.1128/jvi.57.3.1168-1172.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harlow E., Crawford L. V., Pim D. C., Williamson N. M. Monoclonal antibodies specific for simian virus 40 tumor antigens. J Virol. 1981 Sep;39(3):861–869. doi: 10.1128/jvi.39.3.861-869.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanda P., Kennedy R. C., Sparrow J. T. Synthesis of polyamide supports for use in peptide synthesis and as peptide-resin conjugates for antibody production. Int J Pept Protein Res. 1991 Oct;38(4):385–391. doi: 10.1111/j.1399-3011.1991.tb01518.x. [DOI] [PubMed] [Google Scholar]
- Kennedy R. C., Dreesman G. R., Butel J. S., Lanford R. E. Suppression of in vivo tumor formation induced by simian virus 40-transformed cells in mice receiving antiidiotypic antibodies. J Exp Med. 1985 Jun 1;161(6):1432–1449. doi: 10.1084/jem.161.6.1432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kit S., Kurimura T., Dubbs D. R. Transplantable mouse tumor line induced by injection of SV40-transformed mouse kidney cells. Int J Cancer. 1969 Jul 15;4(4):384–392. doi: 10.1002/ijc.2910040403. [DOI] [PubMed] [Google Scholar]
- Krieg P., Amtmann E., Jonas D., Fischer H., Zang K., Sauer G. Episomal simian virus 40 genomes in human brain tumors. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6446–6450. doi: 10.1073/pnas.78.10.6446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lanford R. E. Expression of simian virus 40 T antigen in insect cells using a baculovirus expression vector. Virology. 1988 Nov;167(1):72–81. doi: 10.1016/0042-6822(88)90055-4. [DOI] [PubMed] [Google Scholar]
- Mernaugh R. L., Shearer M. H., Bright R. K., Lanford R. E., Kennedy R. C. Idiotype network components are involved in the murine immune response to simian virus 40 large tumor antigen. Cancer Immunol Immunother. 1992;35(2):113–118. doi: 10.1007/BF01741858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pauletti D., Simmonds R., Dreesman G. R., Kennedy R. C. Application of a modified computer algorithm in determining potential antigenic determinants associated with the AIDS virus glycoprotein. Anal Biochem. 1985 Dec;151(2):540–546. doi: 10.1016/0003-2697(85)90217-9. [DOI] [PubMed] [Google Scholar]
- Schick M. R., Dreesman G. R., Kennedy R. C. Induction of an anti-hepatitis B surface antigen response in mice by noninternal image (Ab2 alpha) anti-idiotypic antibodies. J Immunol. 1987 May 15;138(10):3419–3425. [PubMed] [Google Scholar]
- Shearer M. H., Bright R. K., Lanford R. E., Kennedy R. C. Immunization of mice with baculovirus-derived recombinant SV40 large tumour antigen induces protective tumour immunity to a lethal challenge with SV40-transformed cells. Clin Exp Immunol. 1993 Feb;91(2):266–271. doi: 10.1111/j.1365-2249.1993.tb05893.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shearer M. H., Lanford R. L., Kennedy R. C. Monoclonal anti-idiotypic antibodies induce humoral immune responses specific for simian virus 40 large tumor antigen in mice. J Immunol. 1990 Aug 1;145(3):932–939. [PubMed] [Google Scholar]
- Simanis V., Lane D. P. An immunoaffinity purification procedure for SV40 large T antigen. Virology. 1985 Jul 15;144(1):88–100. doi: 10.1016/0042-6822(85)90308-3. [DOI] [PubMed] [Google Scholar]
- Soule H. R., Butel J. S. Subcellular Localization of simian virus 40 large tumor antigen. J Virol. 1979 May;30(2):523–532. doi: 10.1128/jvi.30.2.523-532.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tevethia S. S. Recognition of simian virus 40 T antigen by cytotoxic T lymphocytes. Mol Biol Med. 1990 Feb;7(1):83–96. [PubMed] [Google Scholar]
- Warren R. Q., Nkya W. M., Shao J. F., Anderson S. A., Wolf H., Hendrix C. W., Kanda P., Wabuke M., Boswell R. N., Redfield R. R. Comparison of antibody reactivity to human immunodeficiency virus type 1 (HIV-1) gp160 epitopes in sera from HIV-1-infected individuals from Tanzania and from the United States. J Clin Microbiol. 1992 Jan;30(1):126–131. doi: 10.1128/jcm.30.1.126-131.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warren R. Q., Wolf H., Shuler K. R., Eichberg J. W., Zajac R. A., Boswell R. N., Kanda P., Kennedy R. C. Synthetic peptides define the fine specificity of the human immunodeficiency virus (HIV) gp160 humoral immune response in HIV type 1-infected chimpanzees. J Virol. 1990 Feb;64(2):486–492. doi: 10.1128/jvi.64.2.486-492.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warren R. Q., Wolf H., Zajac R. A., Boswell R. N., Kanda P., Kennedy R. C. Patterns of antibody reactivity to selected human immunodeficiency virus type 1 (HIV-1) gp160 epitopes infected individuals grouped according to CD4+ cell levels. J Clin Immunol. 1991 Jan;11(1):13–21. doi: 10.1007/BF00918790. [DOI] [PubMed] [Google Scholar]
- Wolf H., Warren R. Q., Stunz G. W., Shuler K. R., Kanda P., Kennedy R. C. Fine specificity of the murine antibody response to HIV-1 gp160 determined by synthetic peptides which define selected epitopes. Mol Immunol. 1992 Jul-Aug;29(7-8):989–998. doi: 10.1016/0161-5890(92)90138-n. [DOI] [PubMed] [Google Scholar]
