Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1990 Jan;79(1):7–14. doi: 10.1111/j.1365-2249.1990.tb05119.x

A complex component modulating immune-deficient cells in leprosy patients leading to loss of viability of Mycobacterium leprae--a possible vaccine.

J Marolia 1, P Robinson 1, P R Mahadevan 1
PMCID: PMC1534713  PMID: 2154348

Abstract

Macrophages from peripheral blood of leprosy patients, both multi-bacillary and paucibacillary are unable to kill phagocytosed Mycobacterium leprae due to their inability to produce superoxide (O2-) and hydroxyl radicals (OH.). The macrophages from healthy individuals are able to kill M. leprae along with release of O2- and OH. radicals. The deficiency in the macrophages of both types of leprosy patients is removed by activation of these cells when exposed to a culture supernatant obtained after stimulation of peripheral blood mononuclear cells from the same patients with delipidified cell components of M. leprae which are most likely cell wall proteins. The activation of macrophages also leads to recognition of whole live M. leprae as an antigen by cells from lepromatous patients. This activation of the phagocytes by delipidified cell components is blocked by cyclosporin A, indicating the possible role of several steps involved in immune activation of cells. The observations thus indicate the significant ability of delipidified cell components to eliminate the deficiencies in the macrophages from leprosy patients and restore them to behave like the cells from healthy individuals. Considering all these, it is suggested that delipidified cell components could be potential modulators, and are probably capable of functioning as a vaccine for leprosy.

Full text

PDF
7

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando M., Suga M., Sugimoto M., Tokuomi H. Superoxide production in pulmonary alveolar macrophages and killing of BCG by the superoxide-generating system with or without catalase. Infect Immun. 1979 May;24(2):404–410. doi: 10.1128/iai.24.2.404-410.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babior B. M., Curnutte J. T., Kipnes R. S. Biological defense mechanisms. Evidence for the participation of superoxide in bacterial killing by xanthine oxidase. J Lab Clin Med. 1975 Feb;85(2):235–244. [PubMed] [Google Scholar]
  3. Bhagria A., Mahadevan P. R. A rapid method for viability and drug sensitivity of Mycobacterium leprae cultured in macrophages and using fluorescein diacetate. Indian J Lepr. 1987 Jan-Mar;59(1):9–19. [PubMed] [Google Scholar]
  4. Desai S. D., Birdi T. J., Antia N. H. Correlation between macrophage activation and bactericidal function and Mycobacterium leprae antigen presentation in macrophages of leprosy patients and normal individuals. Infect Immun. 1989 Apr;57(4):1311–1317. doi: 10.1128/iai.57.4.1311-1317.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  6. Gangadharam P. R., Pratt P. E. Susceptibility of Mycobacterium intracellulare to hydrogen peroxide. Am Rev Respir Dis. 1984 Aug;130(2):309–311. doi: 10.1164/arrd.1984.130.2.309. [DOI] [PubMed] [Google Scholar]
  7. Holzer T. J., Nelson K. E., Crispen R. G., Andersen B. R. Mycobacterium leprae fails to stimulate phagocytic cell superoxide anion generation. Infect Immun. 1986 Feb;51(2):514–520. doi: 10.1128/iai.51.2.514-520.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jackett P. S., Aber V. R., Lowrie D. B. Virulence and resistance to superoxide, low pH and hydrogen peroxide among strains of Mycobacterium tuberculosis. J Gen Microbiol. 1978 Jan;104(1):37–45. doi: 10.1099/00221287-104-1-37. [DOI] [PubMed] [Google Scholar]
  9. Kaplan G., Cohn Z. A. Cellular immunity in lepromatous and tuberculoid leprosy. Immunol Lett. 1985;11(3-4):205–209. doi: 10.1016/0165-2478(85)90169-5. [DOI] [PubMed] [Google Scholar]
  10. Klebanoff S. J., Shepard C. C. Toxic effect of the peroxidase-hydrogen peroxide-halide antimicrobial system on Mycobacterium leprae. Infect Immun. 1984 May;44(2):534–536. doi: 10.1128/iai.44.2.534-536.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kvach J. T., Munguia G., Strand S. H. Staining tissue-derived Mycobacterium leprae with fluorescein diacetate and ethidium bromide. Int J Lepr Other Mycobact Dis. 1984 Jun;52(2):176–182. [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Mahadevan P. R., Jagannathan R., Bhagaria A., Vejare S., Agarwal S. Host-pathogen interaction--new in vitro drug test systems against Mycobacterium leprae--possibilities and limitations. Lepr Rev. 1986;57 (Suppl 3):182–200. doi: 10.5935/0305-7518.19860110. [DOI] [PubMed] [Google Scholar]
  14. Marolia J., Mahadevan P. R. Reactive oxygen intermediates inactivate Mycobacterium leprae in the phagocytes from human peripheral blood. Int J Lepr Other Mycobact Dis. 1989 Jun;57(2):483–491. [PubMed] [Google Scholar]
  15. Melancon-Kaplan J., Hunter S. W., McNeil M., Stewart C., Modlin R. L., Rea T. H., Convit J., Salgame P., Mehra V., Bloom B. R. Immunological significance of Mycobacterium leprae cell walls. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1917–1921. doi: 10.1073/pnas.85.6.1917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nathan C. F., Brukner L. H., Silverstein S. C., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. I. Pharmacologic triggering of effector cells and the release of hydrogen peroxide. J Exp Med. 1979 Jan 1;149(1):84–99. doi: 10.1084/jem.149.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nogueira N., Kaplan G., Levy E., Sarno E. N., Kushner P., Granelli-Piperno A., Vieira L., Colomer Gould V., Levis W., Steinman R. Defective gamma interferon production in leprosy. Reversal with antigen and interleukin 2. J Exp Med. 1983 Dec 1;158(6):2165–2170. doi: 10.1084/jem.158.6.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Palay D. A., Cluff C. W., Wentworth P. A., Ziegler H. K. Cyclosporine inhibits macrophage-mediated antigen presentation. J Immunol. 1986 Jun 15;136(12):4348–4353. [PubMed] [Google Scholar]
  19. Pick E., Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods. 1980;38(1-2):161–170. doi: 10.1016/0022-1759(80)90340-3. [DOI] [PubMed] [Google Scholar]
  20. Rastogi N., David H. L. Ultrastructural and chemical studies on wall-deficient forms, spheroplasts and membrane vesicles from Mycobacterium aurum. J Gen Microbiol. 1981 May;124(1):71–79. doi: 10.1099/00221287-124-1-71. [DOI] [PubMed] [Google Scholar]
  21. Ridley D. S., Jopling W. H. Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis. 1966 Jul-Sep;34(3):255–273. [PubMed] [Google Scholar]
  22. Robinson P., Mahadevan P. R. A component of Mycobacterium leprae as immunomodulating agent for immune deficient cells of leprosy patients. J Clin Lab Immunol. 1987 Dec;24(4):171–176. [PubMed] [Google Scholar]
  23. SHEPARD C. C., MCRAE D. H. MYCOBACTERIUM LEPRAE IN MICE: MINIMAL INFECTIOUS DOSE, RELATIONSHIP BETWEEN STAINING QUALITY AND INFECTIVITY, AND EFFECT OF CORTISONE. J Bacteriol. 1965 Feb;89:365–372. doi: 10.1128/jb.89.2.365-372.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sharp A. K., Banerjee D. K. Hydrogen peroxide and superoxide production by peripheral blood monocytes in leprosy. Clin Exp Immunol. 1985 Apr;60(1):203–206. [PMC free article] [PubMed] [Google Scholar]
  25. Sharp A. K., Colston M. J., Banerjee D. K. Susceptibility of Mycobacterium leprae to the bactericidal activity of mouse peritoneal macrophages and to hydrogen peroxide. J Med Microbiol. 1985 Feb;19(1):77–84. doi: 10.1099/00222615-19-1-77. [DOI] [PubMed] [Google Scholar]
  26. Sugimoto M., Higuchi S., Ando M., Horio S., Tokuomi H. The effect of cytochalasin B on the superoxide production by alveolar macrophages obtained from normal rabbit lungs. J Reticuloendothel Soc. 1982 Feb;31(2):117–130. [PubMed] [Google Scholar]
  27. Varey A. M., Champion B. R., Cooke A. Cyclosporine affects the function of antigen-presenting cells. Immunology. 1986 Jan;57(1):111–114. [PMC free article] [PubMed] [Google Scholar]
  28. Walker L., Lowrie D. B. Killing of Mycobacterium microti by immunologically activated macrophages. Nature. 1981 Sep 3;293(5827):69–71. doi: 10.1038/293069a0. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES