Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1990 Oct;82(1):151–156. doi: 10.1111/j.1365-2249.1990.tb05419.x

In vivo boosting of lung natural killer and lymphokine-activated killer cell activity by interleukin-2: comparison of systemic, intrapleural and inhalation routes.

J P Flexman 1, L S Manning 1, B W Robinson 1
PMCID: PMC1535147  PMID: 2208789

Abstract

Natural killer (NK) cells are thought to play a role in host defence against malignancy and infection, in immunoregulation and as precursor cells in a generation of lymphokine-activated killer (LAK) cells which can lyse NK-resistant tumour cells. As the lung is a major site for malignancy and infection and as there are large numbers of lymphoid cells including NK cells in the interstitial compartment of the lung, we evaluated the capacity of interleukin-2 (IL-2), a lymphokine capable of augmenting NK activity in vitro, to augment lung NK cell activity in vivo, using different routes of IL-2 administration. We compared both systemic (i.v. and i.p.) and local (intrapleural and inhalation) routes of IL-2 administration (50,000 U/daily for 5 days) using CBA mice, assessing NK and LAK cell activity in the spleen (systemic) and in the lung. The target cells used for these studies were the YAC-1 (NK-sensitive) and P815, NO36 and HA56 (NK-resistant, LAK-sensitive) cell lines. Splenic NK activity was increased by 1.4-1.9-fold for i.v./i.p., respectively, compared with controls with both systemic routes of administration, and lung NK activity was increased 3.2-fold and 3.8-fold (i.v./i.p, respectively, P less than 0.05), to levels which were comparable to systemic (splenic) NK activity following the same therapy. Intrapleural IL-2 administration similarly enhanced lung NK activity (3.3-fold) and splenic NK activity (1.3-fold; P less than 0.05 versus controls for both). Surprisingly, inhaled IL-2 suppressed both splenic and lung NK cell activity (84 +/- 8% and 78 +/- 10% suppression, respectively, P less than 0.05). LAK cell activity was also enhanced in the lung by 1.8-8-fold in response to i.v., i.p. and intrapleural IL-2, whereas inhaled IL-2 was ineffective in generating LAK cell activity. These results suggest that the systemic and intrapleural administration of IL-2 effectively boost pulmonary NK and LAK activity whereas inhalation of IL-2 does not. Thus, in clinical situations where boosting of local lung NK or LAK cell activity is desired, these routes of IL-2 administration may be effective.

Full text

PDF
151

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dawkins H. J., Shellam G. R. Augmentation of cell-mediated cytotoxicity to a rat lymphoma. I. Stimulation of non-T-cell cytotoxicity in vivo by tumour cells. Int J Cancer. 1979 Aug;24(2):235–243. doi: 10.1002/ijc.2910240216. [DOI] [PubMed] [Google Scholar]
  2. Farrell H. E., Holt P. G., Shellam G. R. Regulation of natural killer cell activity and interferon production in the rat lung following aerosol challenge. Int Arch Allergy Appl Immunol. 1985;78(3):318–325. doi: 10.1159/000233904. [DOI] [PubMed] [Google Scholar]
  3. Flexman J. P., Holt P. G., Mayrhofer G., Latham B. I., Shellam G. R. The role of the thymus in the maintenance of natural killer cells in vivo. Cell Immunol. 1985 Feb;90(2):366–377. doi: 10.1016/0008-8749(85)90201-1. [DOI] [PubMed] [Google Scholar]
  4. Forni G., Giovarelli M., Santoni A. Lymphokine-activated tumor inhibition in vivo. I. The local administration of interleukin 2 triggers nonreactive lymphocytes from tumor-bearing mice to inhibit tumor growth. J Immunol. 1985 Feb;134(2):1305–1311. [PubMed] [Google Scholar]
  5. Grimm E. A., Mazumder A., Zhang H. Z., Rosenberg S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982 Jun 1;155(6):1823–1841. doi: 10.1084/jem.155.6.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grimm W., Seitz M., Kirchner H., Gemsa D. Prostaglandin synthesis in spleen cell cultures of mice injected with Corynebacterium parvum. Cell Immunol. 1978 Oct;40(2):419–426. doi: 10.1016/0008-8749(78)90349-0. [DOI] [PubMed] [Google Scholar]
  7. Herberman R. B., Nunn M. E., Lavrin D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer. 1975 Aug 15;16(2):216–229. doi: 10.1002/ijc.2910160204. [DOI] [PubMed] [Google Scholar]
  8. Holt P. G., Kees U. R., Shon-Hegrad M. A., Rose A., Ford J., Bilyk N., Bowman R., Robinson B. W. Limiting-dilution analysis of T cells extracted from solid human lung tissue: comparison of precursor frequencies for proliferative responses and lymphokine production between lung and blood T cells from individual donors. Immunology. 1988 Aug;64(4):649–654. [PMC free article] [PubMed] [Google Scholar]
  9. Holt P. G., Robinson B. W., Reid M., Kees U. R., Warton A., Dawson V. H., Rose A., Schon-Hegrad M., Papadimitriou J. M. Extraction of immune and inflammatory cells from human lung parenchyma: evaluation of an enzymatic digestion procedure. Clin Exp Immunol. 1986 Oct;66(1):188–200. [PMC free article] [PubMed] [Google Scholar]
  10. Jacobs S. K., Wilson D. J., Kornblith P. L., Grimm E. A. Interleukin-2 or autologous lymphokine-activated killer cell treatment of malignant glioma: phase I trial. Cancer Res. 1986 Apr;46(4 Pt 2):2101–2104. [PubMed] [Google Scholar]
  11. Kawase I., Brooks C. G., Kuribayashi K., Olabuenaga S., Newman W., Gillis S., Henney C. S. Interleukin 2 induces gamma-interferon production: participation of macrophages and NK-like cells. J Immunol. 1983 Jul;131(1):288–292. [PubMed] [Google Scholar]
  12. Kiessling R., Klein E., Wigzell H. "Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975 Feb;5(2):112–117. doi: 10.1002/eji.1830050208. [DOI] [PubMed] [Google Scholar]
  13. Lafreniere R., Rosenberg S. A. Adoptive immunotherapy of murine hepatic metastases with lymphokine activated killer (LAK) cells and recombinant interleukin 2 (RIL 2) can mediate the regression of both immunogenic and nonimmunogenic sarcomas and an adenocarcinoma. J Immunol. 1985 Dec;135(6):4273–4280. [PubMed] [Google Scholar]
  14. Lotze M. T., Grimm E. A., Mazumder A., Strausser J. L., Rosenberg S. A. Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Res. 1981 Nov;41(11 Pt 1):4420–4425. [PubMed] [Google Scholar]
  15. Manning L. S., Bowman R. V., Darby S. B., Robinson B. W. Lysis of human malignant mesothelioma cells by natural killer (NK) and lymphokine-activated killer (LAK) cells. Am Rev Respir Dis. 1989 Jun;139(6):1369–1374. doi: 10.1164/ajrccm/139.6.1369. [DOI] [PubMed] [Google Scholar]
  16. Ortaldo J. R., Herberman R. B. Heterogeneity of natural killer cells. Annu Rev Immunol. 1984;2:359–394. doi: 10.1146/annurev.iy.02.040184.002043. [DOI] [PubMed] [Google Scholar]
  17. Ottow R. T., Steller E. P., Sugarbaker P. H., Wesley R. A., Rosenberg S. A. Immunotherapy of intraperitoneal cancer with interleukin 2 and lymphokine-activated killer cells reduces tumor load and prolongs survival in murine models. Cell Immunol. 1987 Feb;104(2):366–376. doi: 10.1016/0008-8749(87)90038-4. [DOI] [PubMed] [Google Scholar]
  18. Pizza G., Severini G., Menniti D., De Vinci C., Corrado F. Tumour regression after intralesional injection of interleukin 2 (IL-2) in bladder cancer. Preliminary report. Int J Cancer. 1984 Sep 15;34(3):359–367. doi: 10.1002/ijc.2910340312. [DOI] [PubMed] [Google Scholar]
  19. Robinson B. W., Pinkston P., Crystal R. G. Natural killer cells are present in the normal human lung but are functionally impotent. J Clin Invest. 1984 Sep;74(3):942–950. doi: 10.1172/JCI111513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rosenberg S. A., Mulé J. J. Immunotherapy of cancer with lymphokine-activated killer cells and recombinant interleukin-2. Surgery. 1985 Sep;98(3):437–444. [PubMed] [Google Scholar]
  21. Rosenberg S. A., Mulé J. J., Spiess P. J., Reichert C. M., Schwarz S. L. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med. 1985 May 1;161(5):1169–1188. doi: 10.1084/jem.161.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Santoni A., Riccardi C., Barlozzari T., Herberman R. B. Suppression of activity of mouse natural killer (NK) cells by activated macrophages from mice treated with pyran copolymer. Int J Cancer. 1980 Dec 15;26(6):837–843. doi: 10.1002/ijc.2910260619. [DOI] [PubMed] [Google Scholar]
  23. Ting C. C., Yang S. S., Hargrove M. E. Induction of suppressor T cells by interleukin 2. J Immunol. 1984 Jul;133(1):261–266. [PubMed] [Google Scholar]
  24. Trinchieri G., Santoli D. Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of human natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis. J Exp Med. 1978 May 1;147(5):1314–1333. doi: 10.1084/jem.147.5.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Varesio L., Blasi E., Thurman G. B., Talmadge J. E., Wiltrout R. H., Herberman R. B. Potent activation of mouse macrophages by recombinant interferon-gamma. Cancer Res. 1984 Oct;44(10):4465–4469. [PubMed] [Google Scholar]
  26. Whitaker D., Papadimitriou J. M., Walters M. N. The mesothelium and its reactions: a review. Crit Rev Toxicol. 1982 Apr;10(2):81–144. doi: 10.3109/10408448209041321. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES