Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1981 Feb;43(2):311–318.

Analysis of the peanut agglutinin-binding site as a differentiation marker of normal and malignant human lymphoid cells.

U Galili, N Galili, R Or, A Polliack
PMCID: PMC1537290  PMID: 7273483

Abstract

The lectin peanut agglutinin (PNA), which interacts specifically with D-galactosyl residues, was studied for its binding to human normal and malignant lymphoid cells at various stages of differentiation. As previously reported, PNA binds to thymocytes; however, it does not interact with the prothymocytes which precede the cortical thymocyte differentiation stage. No mature peripheral cells in any of the lymphoid organs bind PNA. In contrast to the normal T differentiation pathway, the expression of the PNA-binding site does not seem to coincide with that of T cell characteristics in the various malignant lymphoid cells studied. We therefore conclude that more information is needed about the nature of the PNA-binding site before it can be used as a differentiation marker in malignant lymphoid cells.

Full text

PDF
311

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Bassat H., Mitrani-Rosenbaum S., Gamliel H., Naparstek E., Leizerowitz R., Korkesh A., Sagi M., Voss R., Kohn G., Polliack A. Establishment in continuous culture of a T-lymphoid cell line (HD-Mar) from a patient with Hodgkin's lymphoma. Int J Cancer. 1980 May 15;25(5):583–590. doi: 10.1002/ijc.2910250506. [DOI] [PubMed] [Google Scholar]
  2. Despont J. P., Abel C. A., Grey H. M. Sialic acids and sialyltransferases in murine lymphoid cells: indicators of T cell maturation. Cell Immunol. 1975 Jun;17(2):487–494. doi: 10.1016/s0008-8749(75)80052-9. [DOI] [PubMed] [Google Scholar]
  3. Flandrin G., Brouet J. C. The Sezary cell: cytologic, cytochemical, and immunologic studies. Mayo Clin Proc. 1974 Aug;49(8):575–583. [PubMed] [Google Scholar]
  4. Fresen K. O., Hausen H. Establishment of EBNA-expressing cell lines by infection of Epstein-Barr virus (EBV)-genome-negative human lymphoma cells with different EBV strains. Int J Cancer. 1976 Feb 15;17(2):161–166. doi: 10.1002/ijc.2910170203. [DOI] [PubMed] [Google Scholar]
  5. Galili U., Galili N., Vánky F., Klein E. Natural species-restricted attachment of human and murine T lymphocytes to various cells. Proc Natl Acad Sci U S A. 1978 May;75(5):2396–2400. doi: 10.1073/pnas.75.5.2396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Galili U., Häyry P., Klein E. Loss of net negative surface charge during MLC stimulation of human T lymphocytes: correlation to "stable" E-rosette formation and natural attachment to normal and malignant target cells. Cell Immunol. 1979 Nov;48(1):91–99. doi: 10.1016/0008-8749(79)90102-3. [DOI] [PubMed] [Google Scholar]
  7. Galili U., Klein E., Schlesinger M. Human T lymphocyte receptors for sheep red blood cells and specific antigens: are they identical sites on the cell membrane? J Immunol. 1977 Jul;119(1):104–109. [PubMed] [Google Scholar]
  8. Galili U., Schlesinger M. The formation of stable E-rosettes by human T lymphocytes activated in mixed lymphocyte reactions. J Immunol. 1976 Sep;117(3):730–735. [PubMed] [Google Scholar]
  9. Gatien J. G., Schneeberger E. E., Merler E. Analysis of human thymocyte subpopulations using discontinuous gradients of albumin: precursor lymphocytes in human thymus. Eur J Immunol. 1975 May;5(5):312–317. doi: 10.1002/eji.1830050505. [DOI] [PubMed] [Google Scholar]
  10. Hoessli D., Bron C., Pink J. R. T-lymphocyte differentiation is accompanied by increase in sialic acid content of Thy-1 antigen. Nature. 1980 Feb 7;283(5747):576–578. doi: 10.1038/283576a0. [DOI] [PubMed] [Google Scholar]
  11. Häyry P., Andersson L. C., Gahmberg C., Roberts P., Ranki A., Nordling S. Fractionation of immunocompetent cells by free-flow cell electrophoresis. Isr J Med Sci. 1975 Dec;11(12):1299–1318. [PubMed] [Google Scholar]
  12. Klein E., Klein G., Nadkarni J. S., Nadkarni J. J., Wigzell H., Clifford P. Surface IgM-kappa specificity on a Burkitt lymphoma cell in vivo and in derived culture lines. Cancer Res. 1968 Jul;28(7):1300–1310. [PubMed] [Google Scholar]
  13. Klein G., Giovanella B., Westman A., Stehlin J. S., Mumford D. An EBV-genome-negative cell line established from an American Burkitt lymphoma; receptor characteristics. EBV infectibility and permanent conversion into EBV-positive sublines by in vitro infection. Intervirology. 1975;5(6):319–334. doi: 10.1159/000149930. [DOI] [PubMed] [Google Scholar]
  14. Levin S., Russell E. C., Blanchard D., McWilliams N. B., Maurer H. M., Mohanakumar T. Receptors for peanut agglutinin (Arachus hypogea) in childhood acute lymphoblastic leukemia: possible clinical significance. Blood. 1980 Jan;55(1):37–39. [PubMed] [Google Scholar]
  15. London J., Berrih S., Bach J. F. Peanut agglutinin. I. A new tool for studying T lymphocyte subpopulations. J Immunol. 1978 Aug;121(2):438–443. [PubMed] [Google Scholar]
  16. London J., Berrih S., Papiernik M. Peanut agglutinin. III. Study of T lymphocyte differentiation during murine ontogeny. Dev Comp Immunol. 1979 Spring;3(2):343–352. doi: 10.1016/s0145-305x(79)80029-4. [DOI] [PubMed] [Google Scholar]
  17. Lozzio C. B., Lozzio B. B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 1975 Mar;45(3):321–334. [PubMed] [Google Scholar]
  18. Minowada J., Onuma T., Moore G. E. Rosette-forming human lymphoid cell lines. I. Establishment and evidence for origin of thymus-derived lymphocytes. J Natl Cancer Inst. 1972 Sep;49(3):891–895. [PubMed] [Google Scholar]
  19. Newman R. A., Klein P. J., Rudland P. S. Binding of peanut lectin to breast epithelium, human carcinomas, and a cultured rat mammary stem cell: use of the lectin as a marker of mammary differentiation. J Natl Cancer Inst. 1979 Dec;63(6):1339–1346. [PubMed] [Google Scholar]
  20. Novogrodsky A., Lotan R., Ravid A., Sharon N. Peanut agglutinin, a new mitogen that binds to galactosyl sites exposed after neuraminidase treatment. J Immunol. 1975 Nov;115(5):1243–1248. [PubMed] [Google Scholar]
  21. PULVERTAFT J. V. A STUDY OF MALIGNANT TUMOURS IN NIGERIA BY SHORT-TERM TISSUE CULTURE. J Clin Pathol. 1965 May;18:261–273. doi: 10.1136/jcp.18.3.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pereira M. E., Kabat E. A., Lotan R., Sharon N. Immunochemical studies on the specificity of the peanut (Arachis hypogaea) agglutinin. Carbohydr Res. 1976 Oct;51(1):107–118. doi: 10.1016/s0008-6215(00)84040-9. [DOI] [PubMed] [Google Scholar]
  23. Ravid Z., Goldblum N., Zaizov R., Schlesinger M., Kertes T., Minowada J., Verbi W., Greaves M. Establishment and characterization of a new leukaemic T-cell line (Peer) with an unusual phenotype. Int J Cancer. 1980 Jun 15;25(6):705–710. doi: 10.1002/ijc.2910250604. [DOI] [PubMed] [Google Scholar]
  24. Reisner Y., Biniaminov M., Rosenthal E., Sharon N., Ramot B. Interaction of peanut agglutinin with normal human lymphocytes and with leukemic cells. Proc Natl Acad Sci U S A. 1979 Jan;76(1):447–451. doi: 10.1073/pnas.76.1.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reisner Y., Biniaminov M., Rosenthal E., Sharon N., Ramot B. Interaction of peanut agglutinin with normal human lymphocytes and with leukemic cells. Proc Natl Acad Sci U S A. 1979 Jan;76(1):447–451. doi: 10.1073/pnas.76.1.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reisner Y., Gachelin G., Dubois P., Nicolas J. F., Sharon N., Jacob F. Interaction of peanut agglutinin, a lectin specific for nonreducing terminal D-galactosyl residues, with embryonal carcinoma cells. Dev Biol. 1977 Nov;61(1):20–27. doi: 10.1016/0012-1606(77)90338-4. [DOI] [PubMed] [Google Scholar]
  27. Rose M. L., Birbeck M. S., Wallis V. J., Forrester J. A., Davies A. J. Peanut lectin binding properties of germinal centres of mouse lymphoid tissue. Nature. 1980 Mar 27;284(5754):364–366. doi: 10.1038/284364a0. [DOI] [PubMed] [Google Scholar]
  28. Rosenfeld C., Goutner A., Choquet C., Venuat A. M., Kayibanda B., Pico J. L., Greaves M. F. Phenotypic characterisation of a unique non-T, non-B acute lymphoblastic leukaemia cell line. Nature. 1977 Jun 30;267(5614):841–843. doi: 10.1038/267841a0. [DOI] [PubMed] [Google Scholar]
  29. Wiig J. N. Effect of neuraminidase on lymphoid cells. Differences in structure of B and T cells and thymocytes of the mouse shown by cell electrophoresis and sialic acid determination. Scand J Immunol. 1974;3(3):357–363. doi: 10.1111/j.1365-3083.1974.tb01265.x. [DOI] [PubMed] [Google Scholar]
  30. Woodruff J. J., Gesner B. M. The effect of neuraminidase on the fate of transfused lymphocytes. J Exp Med. 1969 Mar 1;129(3):551–567. doi: 10.1084/jem.129.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES