Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1981 Jun;44(3):467–475.

Human peripheral blood T lymphocytes express α-, μ- and F(ab')2-related determinants in their surface membranes

D G Haegert
PMCID: PMC1537312  PMID: 6173151

Abstract

Whereas a mean of 81% of freshly isolated human T cells bound purified chicken anti-F(ab')2 antibodies to their surface membranes, 14 and 2% bound chicken anti-μ and chicken anti-α antibody preparations respectively as demonstrated by the mixed antiglobulin rosetting reaction (MARR). Neuraminidase treatment of T cells significantly increased their reactivity in the MARR so that an average of 98, 39 and 40% bound anti-F(ab')2 anti-μ and anti-α reagents respectively. When using anti-F(ab')2 antibodies, inclusion of Fabγ in the rosetting medium caused greater than 90% inhibition of the MARR whereas Fcγ produced only 25% inhibition; this indicates that the determinants seen by anti-F(ab')2 antibodies are not carbohydrate in nature since Fabγ and Fcγ fragments prepared from a human IgG myeloma express identical carbohydrate moieties. To discover whether the various immunoglobulin (Ig) related T cell molecules play a role in antigen recognition, each antiglobulin reagent was assessed for its capacity to inhibit T cell binding of a selected antigen, i.e. fluorescein-labelled keyhole limpet haemocyanin. Whereas the frequency of antigen-binding lymphocytes (ABL) varied from 8·1 to 15·1 per 103 cells, fewer than 1 in 103 cells were Ig-positive with a rabbit F(ab')2 anti-light chain reagent. Thus virtually all ABL were T cells. Each antiglobulin reagent produced 50% or greater inhibition of antigen binding thereby suggesting that F(ab')2-, α-, and μ-related determinants are in close proximity to, or part of, the T cell antigen receptor. More substantial evidence for a direct association of Ig-related surface determinants and the T cell antigen receptor is provided by the finding that under capping conditions, modulation of surface F(ab')2-related determinants by anti-F(ab')2 antibodies reduced antigen binding. Further, that anti-F(ab')2 antibodies induced F(ab')2-, α- and μ-related determinants to co-cap suggests that F(ab')2-related determinants are stably associated with α- and/or μ-related determinants in the T cell membrane and are part of the same Ig-related molecule(s).

Full text

PDF
467

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binz H., Wigzell H. Antigen-binding, idiotypic T-lymphocyte receptors. Contemp Top Immunobiol. 1977;7:113–177. doi: 10.1007/978-1-4684-3054-7_4. [DOI] [PubMed] [Google Scholar]
  2. COOK G. M., HEARD D. H., SEAMAN G. V. Sialic acids and the electrokinetic charge of the human erythrocyte. Nature. 1961 Jul 1;191:44–47. doi: 10.1038/191044a0. [DOI] [PubMed] [Google Scholar]
  3. Drzeniek R. Differences in splitting capacity of virus and V. cholerae neuraminidases on sialic acid type substrates. Biochem Biophys Res Commun. 1967 Mar 21;26(6):631–638. doi: 10.1016/s0006-291x(67)80118-9. [DOI] [PubMed] [Google Scholar]
  4. Du Pasquier L., Weiss N., Loor F. Direct evidence for immunoglobulins on the surface of thymus lymphocytes of amphibian larvae. Eur J Immunol. 1972 Aug;2(4):366–370. doi: 10.1002/eji.1830020414. [DOI] [PubMed] [Google Scholar]
  5. Ellis A. E., Parkhouse R. M. Surface immunoglobulins on the lymphocytes of the skate Raja naevus. Eur J Immunol. 1975 Oct;5(10):726–728. doi: 10.1002/eji.1830051014. [DOI] [PubMed] [Google Scholar]
  6. Goodman J. W., Fong S., Lewis G. K., Kamin R., Nitecki D. E., Der Balian G. Antigen structure and lymphocyte activation. Immunol Rev. 1978;39:36–59. doi: 10.1111/j.1600-065x.1978.tb00396.x. [DOI] [PubMed] [Google Scholar]
  7. Gottlieb A. B., Engelhard M., Kunkel H. G., Tanigaki N., Pressman D. A cross-reaction between beta2-microglobulin and kappa-light chains. J Immunol. 1977 Dec;119(6):2001–2004. [PubMed] [Google Scholar]
  8. Haegert D. G., Coombs R. R. Do human B and null lymphocytes form a single immunoglobulin-bearing population? Lancet. 1979 Nov 17;2(8151):1051–1053. doi: 10.1016/s0140-6736(79)92446-2. [DOI] [PubMed] [Google Scholar]
  9. Haegert D. G., Coombs R. R. Immunoglobulin-positive mononuclear cells in human peripheral blood: detection by mixed anti-globulin and direct anti-globulin-rosetting reactions. J Immunol. 1976 May;116(5):1426–1430. [PubMed] [Google Scholar]
  10. Haegert D. G. Demonstration of immunoglobulin-related molecules on human peripheral blood T lymphocytes using chicken anti-F(ab')2 and anti-IgM antibodies. Immunology. 1980 Nov;41(3):663–671. [PMC free article] [PubMed] [Google Scholar]
  11. Haegert D. G. Observations on the number of immunoglobulin-bearing lymphocytes in human peripheral blood with the mixed antiglobulin-rosetting reaction and direct immunofluorescence. J Immunol. 1978 Jan;120(1):124–129. [PubMed] [Google Scholar]
  12. Haegert D. G. Phagocytic peripheral blood monocytes from rabbits and humans express membrane receptors specific for IgM molecules: evidence that incubation with neuraminidase exposes cryptic IgM (Fc) receptors. Clin Exp Immunol. 1979 Mar;35(3):484–490. [PMC free article] [PubMed] [Google Scholar]
  13. Haegert D. G. Technical improvements in the mixed antiglobulin rosetting reaction with consequent demonstration of high numbers of immunoglobulin-bearing lymphocytes in viable preparations of human peripheral blood. J Immunol Methods. 1978;22(1-2):73–81. doi: 10.1016/0022-1759(78)90059-5. [DOI] [PubMed] [Google Scholar]
  14. Hämmerling G. J., McDevitt H. O. Antigen binding T and B lymphocytes. I. Differences in cellular specificity and influence of metabolic activity on interaction of antigen with T and B cells. J Immunol. 1974 May;112(5):1726–1733. [PubMed] [Google Scholar]
  15. Hämmerling U., Mack C., Pickel H. G. Immunofluorescence analysis of Ig determinants of mouse thymocytes and T cells. Immunochemistry. 1976 Jun;13(6):525–531. doi: 10.1016/0019-2791(76)90329-3. [DOI] [PubMed] [Google Scholar]
  16. Lawrence D. A., Spiegelberg H. L., Weigle W. O. 2,4-Dinitrophenyl receptors on mouse thymus and spleen cells. J Exp Med. 1973 Feb 1;137(2):470–482. doi: 10.1084/jem.137.2.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Luderer A. A., Hess D. M., Odstrchel G. Detection and molecular specificity of murine thymocyte receptors for GAT in responder and non-responder mice utilizing a microradioreceptor assay. Mol Immunol. 1979 Oct;16(10):777–786. doi: 10.1016/0161-5890(79)90155-x. [DOI] [PubMed] [Google Scholar]
  18. Marchalonis J. J. Lymphocyte surface immunoglobulins. Science. 1975 Oct 3;190(4209):20–29. doi: 10.1126/science.1101378. [DOI] [PubMed] [Google Scholar]
  19. Pollack W., Reckel R. P. The zeta potential and hemagglutination with Rh antibodies. A physiochemical explanation. Int Arch Allergy Appl Immunol. 1970;38(5):482–496. doi: 10.1159/000230301. [DOI] [PubMed] [Google Scholar]
  20. Roelants G. E., Rydén A., Hägg L. B., Loor F. Active synthesis of immunoglobulin receptors for antigen by T lymphocytes. Nature. 1974 Jan 11;247(5436):106–108. doi: 10.1038/247106a0. [DOI] [PubMed] [Google Scholar]
  21. Rolley R. T., Marchalonis J. J. Release and assay of antigen-binding immunoglobulin from the surfaces of lymphocytes of unsensitized mice. Transplantation. 1972 Dec;14(6):734–741. doi: 10.1097/00007890-197212000-00011. [DOI] [PubMed] [Google Scholar]
  22. Schreiner G. F., Unanue E. R. Membrane and cytoplasmic changes in B lymphocytes induced by ligand-surface immunoglobulin interaction. Adv Immunol. 1976;24:37–165. doi: 10.1016/s0065-2776(08)60329-6. [DOI] [PubMed] [Google Scholar]
  23. Spiegelberg H. L., Abel C. A., Fishkin B. G., Grey H. M. Localization of the carbohydrate within the variable region of light and heavy chains of human gamma g myeloma proteins. Biochemistry. 1970 Oct 13;9(21):4217–4223. doi: 10.1021/bi00823a025. [DOI] [PubMed] [Google Scholar]
  24. Szenberg A., Marchalonis J. J., Warner N. L. Direct demonstration of murine thymus-dependent cell surface endogenous immunoglobin. Proc Natl Acad Sci U S A. 1977 May;74(5):2113–2117. doi: 10.1073/pnas.74.5.2113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vitetta E. S., Uhr J. W. Immunoglobulin-receptors revisited. Science. 1975 Sep 19;189(4207):964–969. doi: 10.1126/science.1083069. [DOI] [PubMed] [Google Scholar]
  26. Warr G. W., Marchalonis J. J. Specific immune recognition by lymphocytes: an evolutionary perspective. Q Rev Biol. 1978 Sep;53(3):225–241. doi: 10.1086/410621. [DOI] [PubMed] [Google Scholar]
  27. Warr G. W., Marton G., Szenberg A., Marchalonis J. J. Reactions of chicken antibodies with immunoglobulins of mouse serum and T cells. Immunochemistry. 1978 Sep;15(9):615–622. doi: 10.1016/0161-5890(78)90033-0. [DOI] [PubMed] [Google Scholar]
  28. Warr G. W. Membrane immunoglobulins of vertebrate lymphocytes. Contemp Top Immunobiol. 1980;9:141–170. doi: 10.1007/978-1-4615-9131-3_6. [DOI] [PubMed] [Google Scholar]
  29. Yamaga K. M., Kubo R. T., Etlinger H. M. Studies on the question of conventional immunoglobulin on thymocytes from primitive vertebrates. I. Presence of anti-carbohydrate antibodies in rabbit anti-trout Ig sera. J Immunol. 1978 Jun;120(6):2068–2073. [PubMed] [Google Scholar]
  30. Yamaga K. M., Kubo R. T., Etlinger H. M. Studies on the question of conventional immunoglobulin on thymocytes from primitive vertebrates. II. Delineation between Ig-specific and cross-reactive membrane components. J Immunol. 1978 Jun;120(6):2074–2079. [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES