Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1976 Mar;23(3):471–476.

Peripheral lymphocyte subpopulations in human falciparum malaria.

D J Wyler
PMCID: PMC1538392  PMID: 780013

Abstract

The concentration of circulating T, B, and 'null' lymphocytes was determined in thirty children and three adults with Plasmodium falciparum infections in West Africa. During infection, both percentage as well as concentration of T cells were decreased as compared to levels following treatment. The percentage but not concentration of B cells was increased. Both percentage and concentration of 'null' cells were increased in malaria. Patients with splenomegaly had the most severe alterations in T-cell number; no other historic or clinical parameter correlated with the degree or pattern or change in circulating lymphocyte subpopulations. These alterations were rapidly reversible after antimalarial treatment and presumably represent the sequestration of T cells in the spleen or other organs.

Full text

PDF
471

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bianco C., Patrick R., Nussenzweig V. A population of lymphocytes bearing a membrane receptor for antigen-antibody-complement complexes. I. Separation and characterization. J Exp Med. 1970 Oct 1;132(4):702–720. doi: 10.1084/jem.132.4.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COHEN S., McGREGOR I. A., CARRINGTON S. Gamma-globulin and acquired immunity to human malaria. Nature. 1961 Nov 25;192:733–737. doi: 10.1038/192733a0. [DOI] [PubMed] [Google Scholar]
  3. Fauci A. S., Dale D. C. The effect of in vivo hydrocortisone on subpopulations of human lymphocytes. J Clin Invest. 1974 Jan;53(1):240–246. doi: 10.1172/JCI107544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fauci A. S. Mechanisms of corticosteroid action on lymphocyte subpopulations. I. Redistribution of circulating T and b lymphocytes to the bone marrow. Immunology. 1975 Apr;28(4):669–680. [PMC free article] [PubMed] [Google Scholar]
  5. Jondal M., Holm G., Wigzell H. Surface markers on human T and B lymphocytes. I. A large population of lymphocytes forming nonimmune rosettes with sheep red blood cells. J Exp Med. 1972 Aug 1;136(2):207–215. doi: 10.1084/jem.136.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Krettli A. U., Nussenzweig R. Depletion of T and B lymphocytes during malarial infections. Cell Immunol. 1974 Sep;13(3):440–446. doi: 10.1016/0008-8749(74)90263-9. [DOI] [PubMed] [Google Scholar]
  7. Niklasson P. M., Williams R. C., Jr Studies of peripheral blood T-and B-lymphocytes in acute infections. Infect Immun. 1974 Jan;9(1):1–7. doi: 10.1128/iai.9.1.1-7.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rowley D. A., Gowans J. L., Atkins R. C., Ford W. L., Smith M. E. The specific selection of recirculating lymphocytes by antigen in normal and preimmunized rats. J Exp Med. 1972 Sep 1;136(3):499–513. doi: 10.1084/jem.136.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Williams R. C., Jr, DeBoard J. R., Mellbye O. J., Messner R. P., Lindström F. D. Studies of T- and B-lymphocytes in patients with connective tissue diseases. J Clin Invest. 1973 Feb;52(2):283–295. doi: 10.1172/JCI107184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wybran J., Fudenberg H. H. Thymus-derived rosette-forming cells in various human disease states: cancer, lymphoma, bacterial and viral infections, and other diseases. J Clin Invest. 1973 May;52(5):1026–1032. doi: 10.1172/JCI107267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wyler D. J., Oppenheim J. J. Lymphocyte transformation in human Plasmodium falciparum malaria. J Immunol. 1974 Aug;113(2):449–454. [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES