Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 2006 Aug;50(8):2875–2879. doi: 10.1128/AAC.00286-06

In Vitro Activities of Dalbavancin and 12 Other Agents against 329 Aerobic and Anaerobic Gram-Positive Isolates Recovered from Diabetic Foot Infections

Ellie J C Goldstein 1,2,*, Diane M Citron 1, Yumi A Warren 1, Kerin L Tyrrell 1, C Vreni Merriam 1, Helen T Fernandez 1
PMCID: PMC1538693  PMID: 16870792

Abstract

Tests of dalbavancin's in vitro activity against 209 aerobic and 120 anaerobic isolates from pretreatment diabetic foot infections showed an MIC90 of ≤0.125 μg/ml against methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), and 120 anaerobes (Clostridium perfringens, other clostridia, Peptoniphilus asaccharolyticus, Finegoldia magna, and Anaerococcus prevotii), compared to respective MIC90s for MSSA and MRSA of 0.5 and 1 μg/ml for vancomycin, 4 and 4 μg/ml for linezolid, 0.5 and 0.5 μg/ml for daptomycin, and 0.25 and >8 μg/ml for clindamycin.


Diabetes will affect ∼14.5 million Americans by 2010 (8), and diabetic foot infections (DFIs) account for 20% of all hospitalizations of diabetic patients (1). DFIs are often multibacterial with aerobic and anaerobic bacteria. Recently, community-acquired methicillin-resistant Staphylococcus aureus (MRSA) (2, 3, 14) has accounted for 50% of all S. aureus skin and skin structure infection (SSTI) isolates (2, 3, 14). Previously, we noted (6) that MRSA was isolated from 20% of DFIs. As a reference lab for a DFI study, we received 473 pretreatment specimens, of which 91.3% grew aerobic bacteria, including 48% that grew S. aureus as one of the isolates (one-quarter of which were MRSA), and 41.6% grew anaerobes, with anaerobic gram-positive cocci the most common isolates.

Dalbavancin (BI397) is new glycopeptide (4, 10) with good activity against gram-positive organisms, including MRSA, but none against gram-negative organisms (13, 19). Dalbavancin has a long elimination half-life (∼8.5 days) and has been effective in treating gram-positive SSTIs (9, 18) with a two-dose regimen. For DFIs, an antimicrobial agent with a long half-life, especially one administered once weekly, seems to be advantageous.

Specimens were obtained from patients with clinical infection who had not received antimicrobials within 48 h and after wound debridement. To avoid bias, 329 consecutively isolated gram-positive aerobic and anaerobic organisms were selected for this study. Isolates were identified by standard criteria (12, 15) and stored in skim milk at −70°C. Frozen anaerobic cultures were subcultured twice onto brucella agar supplemented with hemin, vitamin K1, and 5% sheep blood (Anaerobe Systems, Morgan Hill, CA) to ensure purity and good growth. Aerobic strains were subcultured to Trypticase soy blood agar. Susceptibility testing was performed according to CLSI (formerly NCCLS) standards M11-A6 (17) and M7-A6 (16).

The types and numbers of strains tested are shown in Table 1. Laboratory-standard reference powders were either obtained from their manufacturers or purchased from Sigma Chemicals (St. Louis, MO).

TABLE 1.

In vitro activities of dalbavancin and 12 comparator antimicrobial agents against 209 aerobic and 120 anaerobic gram-positive organisms

Organism tested (no. of isolates) and antibiotic agent MIC (μg/ml)
Range 50% 90%
Aerobes
    MSSA (43)
        Dalbavancin 0.06-0.25 0.125 0.125
        Vancomycin 0.25-1 0.5 0.5
        Linezolid 2-8 4 4
        Daptomycin ≤0.06-1 0.5 0.5
        Meropenem ≤0.06-0.5 ≤0.06 0.125
        Imipenem ≤0.06-0.25 ≤0.06 ≤0.06
        Piperacillin-tazobactam ≤0.125-4 0.5 2
        Penicillin ≤0.06->8 >8 >8
        Amoxicillin-clavulanate ≤0.06-2 0.5 1
        Levofloxacin ≤0.06->8 0.125 0.25
        Clindamycin ≤0.06->8 0.125 0.25
        Cefotetan 2-16 8 8
        Oxacillin ≤0.25-1 ≤0.25 ≤0.25
    MRSA (60)
        Dalbavancin 0.06-0.5 0.125 0.125
        Vancomycin 0.5-1 0.5 1
        Linezolid 2-8 4 4
        Daptomycin 0.25-1 0.5 0.5
        Meropenem ≤0.06->8 4 >8
        Imipenem ≤0.06->8 1 >8
        Piperacillin-tazobactam 1->32 32 >32
        Penicillin 0.25->8 >8 >8
        Amoxicillin-clavulanate 1->8 8 >8
        Levofloxacin 0.125->8 >8 >8
        Clindamycin 0.125->8 >8 >8
        Cefotetan 16->32 >32 >32
        Oxacillin 4->4 >4 >4
    Staphylococcus spp., coagulase-negative (20)a
        Dalbavancin 0.016-2 0.125 0.25
        Vancomycin 0.5-1 1 1
        Linezolid 1-4 2 4
        Daptomycin 0.25-1 0.5 1
        Meropenem ≤0.06->8 0.125 4
        Imipenem ≤0.06-0.25 ≤0.06 0.125
        Piperacillin-tazobactam 0.125->32 0.5 16
        Penicillin ≤0.06->8 8 >8
        Amoxicillin-clavulanate ≤0.06->8 0.125 4
            Levofloxacin 0.125->8 0.25 >8
        Clindamycin ≤0.06->8 0.125 1
        Cefotetan 8->32 16 >32
        Oxacillin ≤0.25->4 ≤0.25 >4
    Streptococcus agalactiae (24)
        Dalbavancin 0.03-0.25 0.06 0.125
        Vancomycin 0.25-0.5 0.25 0.5
        Linezolid 1-2 2 2
        Daptomycin 0.25-0.5 0.25 0.5
        Meropenem ≤0.06-≤0.06 ≤0.06 ≤0.06
        Imipenem ≤0.06-≤0.06 ≤0.06 ≤0.06
        Piperacillin-tazobactam 0.125-0.125 0.125 0.125
        Penicillin ≤0.06-≤0.06 ≤0.06 ≤0.06
        Amoxicillin-clavulanate ≤0.06-≤0.06 ≤0.06 ≤0.06
        Levofloxacin 0.25-0.5 0.5 0.5
        Clindamycin ≤0.06->8 ≤0.06 ≤0.06
        Cefotetan 4-8 4 8
    Beta-hemolytic Streptococcus spp., other (22)b
        Dalbavancin 0.016-0.125 0.06 0.125
        Vancomycin 0.125-0.5 0.25 0.25
        Linezolid 1-4 2 2
        Daptomycin ≤0.06-0.25 ≤0.06 ≤0.06
        Meropenem ≤0.06-≤0.06 ≤0.06 ≤0.06
        Imipenem ≤0.06-≤0.06 ≤0.06 ≤0.06
        Piperacillin-tazobactam 0.125-0.125 0.125 0.125
        Penicillin ≤0.06-≤0.06 ≤0.06 ≤0.06
        Amoxicillin-clavulanate ≤0.06-≤0.06 ≤0.06 ≤0.06
        Levofloxacin 0.25->8 0.5 1
        Clindamycin ≤0.06->8 0.125 0.25
        Cefotetan 1-4 2 2
    Corynebacterium amycolatum (20)
        Dalbavancin 0.06-1 0.125 0.25
        Vancomycin 0.25-0.5 0.25 0.5
        Linezolid 0.25-0.5 0.5 0.5
        Daptomycin ≤0.06-0.25 ≤0.06 0.25
        Meropenem ≤0.06->8 0.5 4
        Imipenem ≤0.06->8 0.125 >8
        Piperacillin-tazobactam ≤0.125->32 4 >32
        Penicillin ≤0.06->8 1 >8
        Amoxicillin-clavulanate ≤0.06->8 1 >8
        Levofloxacin ≤0.06->8 4 >8
        Clindamycin 0.25->8 >8 >8
        Cefotetan 2->32 >32 >32
    Corynebacterium spp. (20)c
        Dalbavancin 0.03-1 0.25 1
        Vancomycin 0.25-0.5 0.25 0.5
        Linezolid ≤0.125-1 0.5 1
        Daptomycin ≤0.06-0.5 0.125 0.5
        Meropenem ≤0.06->8 0.25 >8
        Imipenem ≤0.06->8 0.25 >8
        Piperacillin-tazobactam ≤0.125->32 >32 >32
        Penicillin ≤0.06->8 >8 >8
        Amoxicillin-clavulanate ≤0.06->8 >8 >8
        Levofloxacin ≤0.125->8 8 >8
        Clindamycin 2->8 >8 >8
        Cefotetan 2->32 >32 >32
Anaerobes
    Clostridium spp. (20)d
        Dalbavancin ≤0.015-8 0.03 2
        Vancomycin 0.25-8 0.5 1
        Daptomycin 0.25-16 1 4
        Linezolid 1-8 2 8
        Imipenem ≤0.03-4 0.06 2
        Meropenem ≤0.03-4 ≤0.03 2
        Amoxicillin-clavulanate ≤0.03-1 ≤0.03 0.5
        Penicillin ≤0.03-4 0.125 2
        Piperacillin-tazobactam ≤0.03-8 ≤0.03 4
        Cefotetan 0.06->32 1 2
        Levofloxacin 0.25->8 0.25 >8
        Clindamycin ≤0.03-32 1 16
        Metronidazole ≤0.03-1 0.5 1
    Peptoniphilus asaccharolyticus (20)
        Dalbavancin 0.03-0.25 0.06 0.125
        Vancomycin 0.125-0.5 0.125 0.25
        Daptomycin ≤0.03-1 ≤0.03 0.25
        Linezolid 0.5-2 1 1
        Imipenem ≤0.03-0.06 ≤0.03 ≤0.03
        Meropenem ≤0.03-0.06 ≤0.03 0.06
        Amoxicillin-clavulanate ≤0.03-0.5 ≤0.03 0.25
        Penicillin ≤0.03-0.5 0.06 0.25
        Piperacillin-tazobactam ≤0.03-0.5 ≤0.03 0.125
        Cefotetan 0.25-4 0.5 1
        Levofloxacin 2->8 8 >8
        Clindamycin ≤0.03->32 0.25 >32
        Metronidazole 0.125-2 1 2
    Finegoldia magna (29)
        Dalbavancin ≤0.015-0.125 0.06 0.125
        Vancomycin 0.125-0.5 0.25 0.5
        Daptomycin 0.125-2 0.5 1
        Linezolid 0.5-2 2 2
        Imipenem ≤0.03-0.5 0.06 0.06
        Meropenem ≤0.03-0.125 0.06 0.06
        Amoxicillin-clavulanate ≤0.03-0.5 0.25 0.25
        Penicillin ≤0.03-0.5 0.125 0.25
        Piperacillin-tazobactam ≤0.03-0.5 0.125 0.125
        Cefotetan 0.125-4 1 2
        Levofloxacin 0.25->8 8 >8
        Clindamycin ≤0.03->32 0.5 16
        Metronidazole 0.125-2 0.5 1
    Anaerococcus prevotii (20)
        Dalbavancin ≤0.015-0.25 0.03 0.125
        Vancomycin ≤0.06-0.5 0.25 0.25
        Daptomycin ≤0.03-1 0.125 0.125
        Linezolid 0.5-2 1 1
        Imipenem ≤0.03-0.06 ≤0.03 ≤0.03
        Meropenem ≤0.03-0.06 ≤0.03 ≤0.03
        Amoxicillin-clavulanate ≤0.03-0.125 ≤0.03 0.125
        Penicillin ≤0.03-0.5 0.04 0.125
        Piperacillin-tazobactam ≤0.03-0.25 ≤0.03 0.06
        Cefotetan ≤0.03-2 0.25 0.05
        Levofloxacin 0.5->8 8 >8
        Clindamycin ≤0.03->32 0.125 >32
        Metronidazole 0.125-1 0.5 1
    Other anaerobic gram-positive cocci (31)e
        Dalbavancin ≤0.015-0.25 0.03 0.125
        Vancomycin ≤0.06-0.5 0.25 0.5
        Daptomycin ≤0.03-1 0.25 1
        Linezolid 0.5-2 1 1
        Imipenem ≤0.03-0.06 ≤0.03 0.06
        Meropenem ≤0.03-0.25 0.06 0.25
        Amoxicillin-clavulanate ≤0.03-0.5 0.06 0.125
        Penicillin ≤0.03-0.5 0.06 0.25
        Piperacillin-tazobactam ≤0.03-0.5 ≤0.03 0.25
        Cefotetan ≤0.03-8 0.25 2
        Levofloxacin 0.125->8 2 >8
        Clindamycin ≤0.03-2 0.125 0.25
        Metronidazole ≤0.03-2 0.25 1
a

Staphylococcus epidermidis (4), S. haemolyticus (3), S. capitis (1), S. caprae (1), S. cohnii (1), S. hominis (1), S. lugdunensis (3), S. schleiferi (1), S. sciuri (2), S. simulans (2), and S. warneri (1).

b

Streptococcus group G (19) and S. pyogenes (3).

c

Corynebacterium group F-1 (1), C. glucuronolyticum (1), C. jeikeium (10), C. simulans (1), C. striatum (5), C. urealyticum (1), and Corynebacterium sp. (1).

d

Clostridium cadaveris (4), C. clostridioforme (3), C. innocuum (1), C. perfringens (10), C. sphenoides (1), and C. subterminale (1).

e

Peptostreptococcus anaerobius (9), Peptoniphilus harei (4), P. vaginalis (7), Micromonas micros (7), and Anaerococcus tetradius (4).

The MICs for anaerobes were determined by the agar dilution method using brucella agar supplemented with hemin, vitamin K1, and 5% laked sheep blood. Antimicrobial agents were reconstituted according to the manufacturers' instructions. Serial twofold dilutions of dalbavancin were prepared at 100-fold the final concentration in dimethyl sulfoxide on the day of the test and added to the agar medium at a dilution of 1:100. The other antimicrobial agents were diluted and added according to the CLSI procedure (17). The agar plates were inoculated with a Steers replicator (Craft Machine Inc., Chester, PA) with an inoculum of 105 CFU/spot, incubated in an anaerobic chamber (Anaerobe Systems) at 37°C for 44 to 48 h, and then examined. Control strains (Bacteroides fragilis ATCC 25285, the newly proposed Clostridium difficile ATCC 70057, and S. aureus ATCC 29213) were tested simultaneously.

Aerobic organisms were tested by the broth microdilution method using cation-adjusted Mueller-Hinton broth, with 2.5% lysed horse blood supplementation for the streptococci and corynebacteria. Dalbavancin was tested separately in dry-format trays prepared by TREK Diagnostics (Cleveland, OH) and provided by Vicuron (now Pfizer, Inc., New York, NY). The trays containing the remaining antimicrobials were prepared in house with serial twofold dilutions of test drugs using the Quick-Spense apparatus (Sandy Springs Instrument Co., Germantown, MD). Daptomycin tests were supplemented with additional Ca2+ to 50 mg/liter. The trays were stored at −70°C until used. Enterococcus faecalis ATCC 29212 and S. aureus ATCC 29213 were tested simultaneously.

The in vitro activities of dalbavancin and 12 comparator agents are shown in Table 1. Dalbavancin had an MIC90 of 0.125 μg/ml against methicillin-susceptible S. aureus (MSSA) and MRSA isolates. Other MIC90s for MSSA and MRSA, respectively, were 0.5 and 1 μg/ml for vancomycin, 4 and 4 μg/ml for linezolid, 0.5 and 0.5 μg/ml for daptomycin, and 0.25 and >8 μg/ml for clindamycin. The MIC of dalbavancin for one of three strains of Staphylococcus haemolyticus was 2 μg/ml. To determine if this was peculiar to the species, we tested 16 additional strains and found the range to be 0.06 to 0.125 μg/ml. Against Streptococcus agalactiae, Streptococcus pyogenes, and group G beta-hemolytic streptococci, dalbavancin had an MIC90 of 0.125 μg/ml. Dalbavancin inhibited Corynebacterium amycolatum and Corynebacterium jeikeium strains at ≤1 μg/ml and was active against 120 anaerobes (Clostridium perfringens, other clostridia, Peptoniphilus asaccharolyticus, Finegoldia magna, Anaerococcus prevotii, and other anaerobic gram-positive cocci), with MIC90s of ≤0.125 μg/ml.

Dalbavancin was generally at least twofold more active than vancomycin and daptomycin and fourfold more active than linezolid against MRSA, MSSA, and coagulase-negative staphylococcus isolates. Most (>50%) of the MRSA isolates were resistant to clindamycin (MICs of >8 μg/ml).

In vitro studies on dalbavancin have focused on aerobic gram-positive isolates that come from a variety of clinical sources, including thousands of European and American staphylococcal isolates (11, 13, 19). MIC90s for S. aureus and coagulase-negative isolates, whether susceptible or resistant to methicillin, were in most cases 0.06 μg/ml; somewhat lower MICs were observed for streptococci. Higher MICs were seen only with some vancomycin-resistant E. faecalis and E. faecium strains. Goldstein et al. (5) studied 238 anaerobes and 52 Corynebacterium species and noted that dalbavancin was 1 to 3 dilutions more active than vancomycin against most strains.

Recent studies (7; D. M. Citron, E. J. C. Goldstein, B. A. Lipsky, A. Tice, D. E. Morgenstern, and M. A. Abramson, 45th Intersci. Conf. Antimicrob. Agents Chemother., abstr. E-1440, 2005) have suggested that the source of isolates may be an important factor that influences the activity of agents, noting different susceptibilities of anaerobic gram-positive cocci isolated from DFIs compared to those from intra-abdominal infections. Our study is unique in that it examined only strains isolated from pretreatment DFIs. We found that dalbavancin was more active against MSSA and MRSA isolates than vancomycin, linezolid, daptomycin, and clindamycin and was active against C. perfringens, other clostridia, P. asaccharolyticus, F. magna, and A. prevotii, with MIC90s of ≤0.125 μg/ml.

In a recent clinical comparison, dalbavancin (>90% clinical success rate) was equivalent to linezolid in the treatment of complicated SSTIs (9) with MRSA as a baseline pathogen in 51% of patients, 23% of whom were diabetic. The bacteriology of the DFIs was not specifically elucidated. Our study showed dalbavancin to have excellent in vitro activity against the 329 gram-positive aerobic and anaerobic DFI strains tested.

The in vitro data coupled with the clinical studies suggest that dalbavancin is active against a wide variety of gram-positive isolates and might provide an advantage for patient management of DFI in emergency departments, as well as both outpatient and inpatient settings.

Acknowledgments

This study was sponsored in part by a grant from Vicuron Pharmaceuticals Inc.

We thank Judee H. Knight and Alice E. Goldstein for various forms of assistance.

REFERENCES

  • 1.Bailey, T. S., H. M. Yu, and E. J. Rayfield. 1985. Patterns of foot examination in a diabetes clinic. Am. J. Med. 78:371-374. [DOI] [PubMed] [Google Scholar]
  • 2.Diederen, B. M., and J. A. Kluytmans. 2006. The emergence of infections with community-associated methicillin resistant Staphylococcus aureus. J. Infect. 52:157-168. [DOI] [PubMed] [Google Scholar]
  • 3.Frazee, B. W., J. Lynn, E. D. Charlebois, L. Lambert, D. Lowery, and F. Perdreau-Remington. 2005. High prevalence of methicillin-resistant Staphylococcus aureus in emergency department skin and soft tissue infections. Ann. Emerg. Med. 45:311-320. [DOI] [PubMed] [Google Scholar]
  • 4.Goldstein, B. P., G. Candiani, T. M. Arain, G. Romano, I. Ciciliato, M. Berti, M. Abbondi, R. Scotti, M. Mainini, and F. Ripamonti. 1995. Antimicrobial activity of MDL 63,246, a new semisynthetic glycopeptide antibiotic. Antimicrob. Agents Chemother. 39:1580-1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Goldstein, E. J. C., D. M. Citron, C. V. Merriam, Y. Warren, K. Tyrrell, and H. T. Fernandez. 2003. In vitro activities of dalbavancin and nine comparator agents against anaerobic gram-positive species and corynebacteria. Antimicrob. Agents Chemother. 47:1968-1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Goldstein, E. J. C., D. M. Citron, and C. A. Nesbit. 1996. Diabetic foot infections. Bacteriology and activity of 10 oral antimicrobial agents against bacteria isolated from consecutive cases. Diabetes Care 19:638-641. [DOI] [PubMed] [Google Scholar]
  • 7.Goldstein, E. J. C., D. M. Citron, Y. A. Warren, K. L. Tyrrell, C. V. Merriam, and H. Fernandez. 2006. In vitro activity of moxifloxacin against 923 anaerobes isolated from human intra-abdominal infections. Antimicrob. Agents Chemother. 50:148-155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Hogan, P., T. Dall, and P. Nikolov. 2003. Economic costs of diabetes in the US in 2002. Diabetes Care 26:917-932. [DOI] [PubMed] [Google Scholar]
  • 9.Jauregui, L. E., S. Babazadeh, E. Seltzer, L. Goldberg, D. Krievins, M. Frederick, D. Krause, I. Satilovs, Z. Endzinas, J. Breaux, and W. O'Riordan. 2005. Randomized, double-blind comparison of once-weekly dalbavancin versus twice-daily linezolid therapy for the treatment of complicated skin and skin structure infections. Clin. Infect. Dis. 41:1407-1415. [DOI] [PubMed] [Google Scholar]
  • 10.Jones, R. N., D. J. Biedenbach, D. M. Johnson, and M. A. Pfaller. 2001. In vitro evaluation of BI 397, a novel glycopeptide antimicrobial agent. J. Chemother. 13:244-254. [DOI] [PubMed] [Google Scholar]
  • 11.Jones, R. N., M. S. Stillwell, H. S. Sader, T. R. Fritsche, and B. P. Goldstein. 2006. Spectrum and potency of dalbavancin tested against 3322 gram-positive cocci isolated in the United States Surveillance Program (2004). Diagn. Microbiol. Infect. Dis. 54:149-153. [DOI] [PubMed] [Google Scholar]
  • 12.Jousimies-Somer, H. R., P. Summanen, D. M. Citron, E. J. Baron, H. M. Wexler, and S. M. Finegold. 2002. Wadsworth-KTL anaerobic bacteriology manual. Star Publishing, Belmont, CA.
  • 13.Lin, G., K. Credito, L. M. Ednie, and P. C. Appelbaum. 2005. Antistaphylococcal activity of dalbavancin, an experimental glycopeptide. Antimicrob. Agents Chemother. 49:770-772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Moran, G. J., R. N. Amii, F. M. Abrahamian, and D. A. Talan. 2005. Methicillin-resistant Staphylococcus aureus in community-acquired skin infections. Emerg. Infect. Dis. 11:928-930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Murray, P. R., E. J. Baron, J. H. Jorgensen, M. A. Pfaller, and R. H. Yolken (ed.). 2003. Manual of clinical microbiology, 8th ed. ASM Press, Washington, D.C.
  • 16.NCCLS. 2003. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Document M7-A6. NCCLS, Wayne, Pa.
  • 17.NCCLS. 2004. Methods for antimicrobial susceptibility testing of anaerobic bacteria. Approved standard M11-A6. NCCLS, Wayne, Pa.
  • 18.Seltzer, E., M. B. Dorr, B. P. Goldstein, M. Perry, J. A. Dowell, and T. Henkel. 2003. Once-weekly dalbavancin versus standard-of-care antimicrobial regimens for treatment of skin and soft-tissue infections. Clin. Infect. Dis. 37:1298-1303. [DOI] [PubMed] [Google Scholar]
  • 19.Streit, J. M., T. R. Fritsche, H. S. Sader, and R. N. Jones. 2004. Worldwide assessment of dalbavancin activity and spectrum against over 6,000 clinical isolates. Diagn. Microbiol. Infect. Dis. 48:137-143. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES