Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1977 Jan;27(1):178–182.

Drug-induced immunological unresponsiveness: selective inhibition of T-cell 'helper function' by cyclophosphamide in mice pretreated with phytohaemagglutinin.

G Schwarze
PMCID: PMC1540908  PMID: 321157

Abstract

Studies involving the combined use of phytohaemagglutinin (PHA) and cyclophosphamide (CY) indicate that both agents can act together to produce immunological unresponsiveness: following injection of PHA into mice, splenic DNA synthetic responses [14C]thymidine incorporation) and haemolysin plaque formation against sheep red blood cells were determined in daily intervals. Both immunosuppression and DNA synthetic activity were maximally developed 5 days after treatment with PHA. Administration of CY at this time resulted in immunological unresponsiveness lasting for about 18 days. Antibody production could be completely restored with antigen-activated T cells (but not with B cells), thus indicating a selective inhibition of T-cell 'helper function' in mice treated with PHA and CY. This observation is consistent with the general assumption that cells involved in the response to PHA are predominantly T cells. Apparently, these cells are highly sensitive to an inactivation by CY after stimulation with PHA.

Full text

PDF
178

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ada G. L. Antigen binding cells in tolerance and immunity. Transplant Rev. 1970;5:105–129. doi: 10.1111/j.1600-065x.1970.tb00358.x. [DOI] [PubMed] [Google Scholar]
  2. Andersson L., Häyry P. Phi-isoantigenic marker in phytohemagglutinin-responding mouse blood lymphocytes. Experientia. 1972 Jan 15;28(1):81–83. doi: 10.1007/BF01928276. [DOI] [PubMed] [Google Scholar]
  3. Barron L. D. Parity and optical activity. Nature. 1972 Jul 7;238(5358):17–19. doi: 10.1038/238017a0. [DOI] [PubMed] [Google Scholar]
  4. Bruce W. R., Meeker B. E., Powers W. E., Valeriote F. A. Comparison of the dose- and timesurvival curves for normal hematopoietic and lymphoma colony-forming cells exposed to vinblastine, vincristine, arabinosylcytosine, and amethopterin. J Natl Cancer Inst. 1969 Jun;42(6):1015–1025. [PubMed] [Google Scholar]
  5. Bruce W. R., Meeker B. E., Valeriote F. A. Comparison of the sensitivity of normal hematopoietic and transplanted lymphoma colony-forming cells to chemotherapeutic agents administered in vivo. J Natl Cancer Inst. 1966 Aug;37(2):233–245. [PubMed] [Google Scholar]
  6. Claman H. N., Chaperon E. A. Immunologic complementation between thymus and marrow cells--a model for the two-cell theory of immunocompetence. Transplant Rev. 1969;1:92–113. doi: 10.1111/j.1600-065x.1969.tb00137.x. [DOI] [PubMed] [Google Scholar]
  7. Crathorn A. R., Roberts J. J. Mechanism of the cytotoxic action of alkylating agents in mammalian cells and evidence for the removal of alkylated groups from deoxyribonucleic acid. Nature. 1966 Jul 9;211(5045):150–153. doi: 10.1038/211150a0. [DOI] [PubMed] [Google Scholar]
  8. Doenhoff M. J., Davies A. J., Leuchars E., Wallis V. Chimaerism after introduction of lymphocytes into normal mice. Nature. 1970 Sep 26;227(5265):1352–1354. doi: 10.1038/2271352a0. [DOI] [PubMed] [Google Scholar]
  9. Gorczynski R. M., Miller R. G., Phillips R. A. Initiation of antibody production to sheep erythrocytes in vitro: replacement of the requirement for T-cells with a cell-free factor isolated from cultures of lymphoid cells. J Immunol. 1972 Feb;108(2):547–551. [PubMed] [Google Scholar]
  10. Greaves M. F., Roitt I. M., Rose M. E. Effect of bursectomy and thymectomy on the responses of chicken peripheral blood lymphocytes to phytohaemagglutinin. Nature. 1968 Oct 19;220(5164):293–295. doi: 10.1038/220293a0. [DOI] [PubMed] [Google Scholar]
  11. Greaves M., Janossy G. Elicitation of selective T and B lymphocyte responses by cell surface binding ligands. Transplant Rev. 1972;11:87–130. doi: 10.1111/j.1600-065x.1972.tb00047.x. [DOI] [PubMed] [Google Scholar]
  12. Hartmann K. U. Induction of a hemolysin response in vitro. Interaction of cells of bone marrow origin and thymic origin. J Exp Med. 1970 Dec 1;132(6):1267–1278. doi: 10.1084/jem.132.6.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jerne N. K., Nordin A. A. Plaque Formation in Agar by Single Antibody-Producing Cells. Science. 1963 Apr 26;140(3565):405–405. doi: 10.1126/science.140.3565.405. [DOI] [PubMed] [Google Scholar]
  14. Kerckhaert J. A., Van den Berg G. J., Willers J. M. Influence of cyclophosphamide on the delayed hypersensitivity of the mouse. Ann Immunol (Paris) 1974 Mar-Apr;125(3):415–426. [PubMed] [Google Scholar]
  15. Lagrange P. H., Mackaness G. B., Miller T. E. Potentiation of T-cell-mediated immunity by selective suppression of antibody formation with cyclophosphamide. J Exp Med. 1974 Jun 1;139(6):1529–1539. doi: 10.1084/jem.139.6.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miller J. F., Mitchell G. F. Cell to cell interaction in the immune response. I. Hemolysin-forming cells in neonatally thymectomized mice reconstituted with thymus or thoracic duct lymphocytes. J Exp Med. 1968 Oct 1;128(4):801–820. doi: 10.1084/jem.128.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mishell R. I., Dutton R. W. Immunization of dissociated spleen cell cultures from normal mice. J Exp Med. 1967 Sep 1;126(3):423–442. doi: 10.1084/jem.126.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schwarze G., Scheurlen P. G. Drug-induced immunological tolerance to sheep red blood cells in mice: effective combination therapy with vincristine and cyclophosphamide. Int Arch Allergy Appl Immunol. 1974;46(4):629–643. doi: 10.1159/000231163. [DOI] [PubMed] [Google Scholar]
  19. Shortman K., Diener E., Russell P., Armstrong W. D. The role of nonlymphoid accessory cells in the immune response to different antigens. J Exp Med. 1970 Mar 1;131(3):461–482. doi: 10.1084/jem.131.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stobo J. D., Rosenthal A. S., Paul W. E. Functional heterogeneity of murine lymphoid cells. I. Responsiveness to and surface binding of concanavalin A and phytohemagglutinin. J Immunol. 1972 Jan;108(1):1–17. [PubMed] [Google Scholar]
  21. Turk J. L., Parker D., Poulter L. W. Functional aspects of the selective depletion of lymphoid tissue by cyclophosphamide. Immunology. 1972 Oct;23(4):493–501. [PMC free article] [PubMed] [Google Scholar]
  22. Turk J. L., Poulter L. W. Selective depletion of lymphoid tissue by cyclophosphamide. Clin Exp Immunol. 1972 Feb;10(2):285–296. [PMC free article] [PubMed] [Google Scholar]
  23. Vann D. C., Dotson C. R. Cellular cooperation and stimulatory factors in antibody responses: limiting dilution analysis in vitro. J Immunol. 1974 Mar;112(3):1149–1157. [PubMed] [Google Scholar]
  24. Vann D. C., Kettman J. R. In vitro cooperation of cells of bone marrow and thymus origins in the generation of antibody-forming cells. J Immunol. 1972 Jan;108(1):73–80. [PubMed] [Google Scholar]
  25. Wheeler G. P. Symposium on immunosuppressive drugs. Some biochemical effects of alkylating agents. Fed Proc. 1967 May-Jun;26(3):885–892. [PubMed] [Google Scholar]
  26. van Putten L. M., Lelieveld P. Factors determining cell killing by chemotherapeutic agents in vivo. I. Cyclophosphamide. Eur J Cancer. 1970 Aug;6(4):313–321. doi: 10.1016/0014-2964(70)90096-4. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES