Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1976 Dec;26(3):597–600.

Maintenance of immunologic self-tolerance by nonimmunogenic forms of antigen.

R H Swanborg
PMCID: PMC1540960  PMID: 64328

Abstract

Immunologic tolerance to EAE in guinea-pigs appears to be a function of a determinant distinct from the encephalitogenic region of the myelin basic protein molecule. In Lewis rats (in which species the molecular sites for disease-induction and tolerance have not been completely characterized) the mechanism underlying this state of immunologic tolerance involves suppressor cell regulation of the autoimmune response. On the basis of these experimental findings we postulate that natural self-tolerance is maintained by suppressor T cells which are stimulated by nonimmunogenic fragments of self-antigen released during protein turnover.

Full text

PDF
597

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison A. C. The roles of T and B lymphocytes in self-tolerance and autoimmunity. Contemp Top Immunobiol. 1974;3:227–242. doi: 10.1007/978-1-4684-3045-5_9. [DOI] [PubMed] [Google Scholar]
  2. Anderson J. D., Null G. W., Wong S. K. Gravitational parameters of the jupiter system from the Doppler tracking of pioneer 10. Science. 1974 Jan 25;183(4122):322–323. doi: 10.1126/science.183.4122.322. [DOI] [PubMed] [Google Scholar]
  3. Baker P. J., Stashak P. W., Amsbaugh D. F., Prescott B. Regulation of the antibody response to type 3 pneumococcal polysaccharide. II. Mode of action of thymic-derived suppressor cells. J Immunol. 1974 Jan;112(1):404–409. [PubMed] [Google Scholar]
  4. Barthold D. R., Kysela S., Steinberg A. D. Decline in suppressor T cell function with age in female NZB mice. J Immunol. 1974 Jan;112(1):9–16. [PubMed] [Google Scholar]
  5. Bullock W. W., Katz D. H., Benacerraf B. Induction of T-lymphocyte responses to a small molecular weight antigen. III. T-T cell interactions to determinants linked together: suppression vs. enhancement. J Exp Med. 1975 Aug 1;142(2):275–287. doi: 10.1084/jem.142.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chiller J. M., Habicht G. S., Weigle W. O. Kinetic differences in unresponsiveness of thymus and bone marrow cells. Science. 1971 Feb 26;171(3973):813–815. doi: 10.1126/science.171.3973.813. [DOI] [PubMed] [Google Scholar]
  7. Cohen I. R., Wekerle H. Regulation of autosensitization. The immune activation and specific inhibition of self-recognizing thymus-derived lymphocytes. J Exp Med. 1973 Feb 1;137(2):224–238. doi: 10.1084/jem.137.2.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gerber N. L., Hardin J. A., Chused T. M., Steinberg A. D. Loss with age in NZB-W mice of thymic suppressor cells in the graft-vs-host reaction. J Immunol. 1974 Nov;113(5):1618–1625. [PubMed] [Google Scholar]
  9. Gershon R. K. T cell control of antibody production. Contemp Top Immunobiol. 1974;3:1–40. doi: 10.1007/978-1-4684-3045-5_1. [DOI] [PubMed] [Google Scholar]
  10. Gonatas N. K., Howard J. C. Inhibition of experimental allergic encephalomyelitis in rats severely depleted of T cells. Science. 1974 Nov 29;186(4166):839–841. doi: 10.1126/science.186.4166.839. [DOI] [PubMed] [Google Scholar]
  11. Hellström I., Hellström K. E. Can "blocking" serum factors protect against autoimmunity? Nature. 1972 Dec 22;240(5382):471–473. doi: 10.1038/240471a0. [DOI] [PubMed] [Google Scholar]
  12. Hellström K. E., Hellström I. Lymphocyte-mediated cytotoxicity and blocking serum activity to tumor antigens. Adv Immunol. 1974;18:209–277. doi: 10.1016/s0065-2776(08)60311-9. [DOI] [PubMed] [Google Scholar]
  13. Pfizenmaier K., Trostmann H., Röllinghoff M., Wagner H. Temporary presence of self-reactive cytotoxic T lymphocytes during murine lymphocytic choriomeningitis. Nature. 1975 Nov 20;258(5532):238–240. doi: 10.1038/258238a0. [DOI] [PubMed] [Google Scholar]
  14. Swanborg R. H. Antigen-induced inhibition of experimental allergic encephalomyelitis. III. Localization of an inhibitory site distinct from the major encephalitogenic determinant of myelin basic protein. J Immunol. 1975 Jan;114(1 Pt 1):191–194. [PubMed] [Google Scholar]
  15. Swierkosz J. E., Swanborg R. H. Suppressor cell control of unresponsiveness to experimental allergic encephalomyelitis. J Immunol. 1975 Sep;115(3):631–633. [PubMed] [Google Scholar]
  16. Talal N., Steinberg A. D. The pathogenesis of autoimmunity in New Zealand black mice. Curr Top Microbiol Immunol. 1974;64(0):79–103. doi: 10.1007/978-3-642-65848-8_3. [DOI] [PubMed] [Google Scholar]
  17. Weigle W. O. Recent observations and concepts in immunological unresponsiveness and autoimmunity. Clin Exp Immunol. 1971 Oct;9(4):437–447. [PMC free article] [PubMed] [Google Scholar]
  18. Westall F. C., Robinson A. B., Caccam J., Jackson J., Ylar E. H. Essential chemical requirements for induction of allergic encephalomyelitis. Nature. 1971 Jan 1;229(5279):22–24. doi: 10.1038/229022a0. [DOI] [PubMed] [Google Scholar]
  19. Wood J. G., King N. Turnover of basic protein of rat brain. Nature. 1971 Jan 1;229(5279):56–58. doi: 10.1038/229056a0. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES