Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1978 Apr;32(1):25–40.

Susceptibility of inbred strains of mice to Trypanosoma congolense: correlation with changes in spleen lymphocyte populations.

W I Morrison, G E Roelants, K S Mayor-Withey, M Murray
PMCID: PMC1541310  PMID: 307464

Abstract

A comparison was made of the susceptibility of eight inbred strains of mice to infection with Trypanosoma congolense. Marked differences in susceptibility as judged by survival were found between the different strains. The capacity of certain strains to survive longer than others appeared to be related to their ability to limit the numbers of trypanosomes in the circulation. There was no difference in the infectivity of T. congolense for mice of high and low susceptibility. Furthermore, the findings of similar prepatent periods suggested that the initial replication rate was similar in the different strains. These findings suggested that the level of parasitaemia in different strains of may reflect differences in the nature of quality of the immune response to the trypanosome. In all of the strains of mice a marked increase in splenic B and null lymphocytes was found. This, allied to the finding of an increase in the background plaque-forming cells to sheep erythrocytes, indicated, as suggested by other workers, that trypanosome infection results in a non-specific polyclonal activation of lymphocytes, and that this affects primarily B lymphocytes. In strains of mice which survived longest, i.e. C57B1/6J and AKR/A, the increase in splenic B and null cells was less marked. Whether this is associated with a decreased susceptibility of these strains to polyclonal activation induced by trypanosome infection, or whether it is merely the result of lower levels of parasitaemia, remains to be determined. By comparing T. congolense infection in three strains of mice congenic at the H-2 locus, representing H-2a, H-2b and H-2k haplotypes, it was found that the susceptibility was not associated with the H-2 haplotype. The finding that (A/J X C57B1/6J)F1 hybrids were of similar susceptibility as the C57B1/6J parents indicated that the relative resistance of this strain is inherited as a dominant trait, although in the early stages of infection the F1 hybrids consistently showed somewhat higher levels of parasitaemia than the C57B1/6J mice. Athymic nude mice and surgically splenectomized mice were found to be more susceptible to T. congolense infection than intact mice of the same strain. However, the effect of splenectomy was much less pronounced in C57B1/6J mice than in the relatively more susceptible BALB/c/A mice.

Full text

PDF
25

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Askonas B. A., Roelants G. E., Mayor-Withey K. S., Welstead J. L. Dual pathway of B lymphocyte differentiation in vitro. Eur J Immunol. 1976 Apr;6(4):250–256. doi: 10.1002/eji.1830060404. [DOI] [PubMed] [Google Scholar]
  2. Askonas B. A., Williamson A. R. Factors affecting the propagation of a B cell clone forming antibody to the 2,4-dinitrophenyl group. Eur J Immunol. 1972 Dec;2(6):487–493. doi: 10.1002/eji.1830020603. [DOI] [PubMed] [Google Scholar]
  3. Büngener W., Müller G. Adhärenzphänomene bei Trypanosoma congolense. Tropenmed Parasitol. 1976 Sep;27(3):370–371. [PubMed] [Google Scholar]
  4. CUNNINGHAM M. P., LUMSDEN W. H., WEBBER W. A. PRESERVATION OF VIABLE TRYPANOSOMES IN LYMPH TUBES AT LOW TEMPERATURE. Exp Parasitol. 1963 Dec;14:280–284. doi: 10.1016/0014-4894(63)90032-8. [DOI] [PubMed] [Google Scholar]
  5. Corsini A. C., Clayton C., Askonas B. A., Ogilvie B. M. Suppressor cells and loss of B-cell potential in mice infected with Trypanosoma brucei. Clin Exp Immunol. 1977 Jul;29(1):122–131. [PMC free article] [PubMed] [Google Scholar]
  6. Cross G. A. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology. 1975 Dec;71(3):393–417. doi: 10.1017/s003118200004717x. [DOI] [PubMed] [Google Scholar]
  7. Diggs C., Flemmings B., Dillon J., Snodgrass R., Campbell G., Esser K. Immune serum-mediated cytotoxicity against Trypanosoma rhodesiense. J Immunol. 1976 Apr;116(4):1005–1009. [PubMed] [Google Scholar]
  8. Goodwin L. G., Green D. G., Guy M. W., Voller A. Immunosuppression during trypanosomiasis. Br J Exp Pathol. 1972 Feb;53(1):40–43. [PMC free article] [PubMed] [Google Scholar]
  9. Greenwood B. M. Possible role of a B-cell mitogen in hypergammaglobulinaemia in malaria and trypanosomiasis. Lancet. 1974 Mar 16;1(7855):435–436. doi: 10.1016/s0140-6736(74)92386-1. [DOI] [PubMed] [Google Scholar]
  10. HAYFLICK L. THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Exp Cell Res. 1965 Mar;37:614–636. doi: 10.1016/0014-4827(65)90211-9. [DOI] [PubMed] [Google Scholar]
  11. Houba V., Brown K. N., Allison A. C. Heterophile antibodies, M-antiglobulins and immunoglobulins in experimental trypanosomiasis. Clin Exp Immunol. 1969 Jan;4(1):113–123. [PMC free article] [PubMed] [Google Scholar]
  12. Hudson K. M., Byner C., Freeman J., Terry R. J. Immunodepression, high IgM levels and evasion of the immune response in murine trypanosomiasis. Nature. 1976 Nov 18;264(5583):256–258. doi: 10.1038/264256a0. [DOI] [PubMed] [Google Scholar]
  13. Janossy G., Greaves M. Functional analysis of murine and human B lymphocyte subsets. Transplant Rev. 1975;24:177–236. doi: 10.1111/j.1600-065x.1975.tb00169.x. [DOI] [PubMed] [Google Scholar]
  14. Jayawardena A. N., Waksman B. H. Suppressor cells in experimentally trypanosomiasis. Nature. 1977 Feb 10;265(5594):539–541. doi: 10.1038/265539a0. [DOI] [PubMed] [Google Scholar]
  15. Kearney J. F., Lawton A. R. B lymphocyte differentiation induced by lipopolysaccharide. I. Generation of cells synthesizing four major immunoglobulin classes. J Immunol. 1975 Sep;115(3):671–676. [PubMed] [Google Scholar]
  16. Kierszenbaum F., Howard J. G. Mechanisms of resistance against experimental Trypanosoma cruzi infection: the importance of antibodies and antibody-forming capacity in the Biozzi high and low responder mice. J Immunol. 1976 May;116(5):1208–1211. [PubMed] [Google Scholar]
  17. Lafleur L., Miller R. G., Phillips R. A. Restriction of specificity in the precursors of bone marrow-associated lymphocytes. J Exp Med. 1973 Apr 1;137(4):954–966. doi: 10.1084/jem.137.4.954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Loor F., Amstutz H., Hägg L. B., Mayor K. S., Roelants G. E. T lineage lymphocytes in nude mice born from homozygous nu/nu parents. Eur J Immunol. 1976 Sep;6(9):663–665. doi: 10.1002/eji.1830060914. [DOI] [PubMed] [Google Scholar]
  19. Loor F., Roelants G. E. Immunofluorescence studies of a possible prethymic T-cell differentiation in congenitally athymic (nude) mice. Ann N Y Acad Sci. 1975 Jun 30;254:226–241. doi: 10.1111/j.1749-6632.1975.tb29173.x. [DOI] [PubMed] [Google Scholar]
  20. Losos G. J., Paris J., Wilson A. J., Dar F. K. Distribution of Trypanosoma congolense in tissues of cattle. Trans R Soc Trop Med Hyg. 1973;67(2):278–278. doi: 10.1016/0035-9203(73)90193-4. [DOI] [PubMed] [Google Scholar]
  21. Luckins A. G. The immune response of zebu cattle infection with Trypanosoma congolense and T. vivax. Ann Trop Med Parasitol. 1976 Jun;70(2):133–145. doi: 10.1080/00034983.1976.11687107. [DOI] [PubMed] [Google Scholar]
  22. McDevitt H. O., Oldstone B. A., Pincus T. Histocompatibility-linked genetic control of specific immune responses to viral infection. Transplant Rev. 1974;19(0):209–225. doi: 10.1111/j.1600-065x.1974.tb00133.x. [DOI] [PubMed] [Google Scholar]
  23. Melchers F., Cone R. E., von Boehmer H., Sprent J. Immunoglobulin turnover in B lymphocyte subpopulations. Eur J Immunol. 1976 Jun;5(6):382–388. doi: 10.1002/eji.1830050606. [DOI] [PubMed] [Google Scholar]
  24. Mouton D., Bouthillier Y., Feingold N., Feingold J., Decreusefond C., Stiffel C., Biozzi G. Genetic control of macrophage functions. I. Polygenic regulation of phagocytosis stimulation produced by Glyceryl Trioleate. J Exp Med. 1975 Feb 1;141(2):306–321. doi: 10.1084/jem.141.2.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Murray P. K., Jennings F. W., Murray M., Urquhart G. M. The nature of immunosuppression in Trypanosoma brucei infections in mice. II. The role of the T and B lymphocytes. Immunology. 1974 Nov;27(5):825–840. [PMC free article] [PubMed] [Google Scholar]
  26. Osmond D. G., Nossal G. J. Differentiation of lymphocytes in mouse bone marrow. II. Kinetics of maturation and renewal of antiglobulin-binding cells studied by double labeling. Cell Immunol. 1974 Jul;13(1):132–145. doi: 10.1016/0008-8749(74)90233-0. [DOI] [PubMed] [Google Scholar]
  27. Roelants G. E., Loor F., von Boehmer H., Sprent J., Hägg L. B., Mayor K. S., Rydén A. Five types of lymphocytes (Ig-theta-, Ig-theta+weak, Ig-theta+strong, Ig+theta- and Ig+theta+) characterized by double immunofluorescence and electrophoretic mobility. Organ distribution in normal and nude mice. Eur J Immunol. 1975 Feb;5(2):127–131. doi: 10.1002/eji.1830050211. [DOI] [PubMed] [Google Scholar]
  28. Roelants G. E., Mayor K. S., Hägg L. B., Loor F. Immature T lineage lymphocytes in athymic mice. Presence of TL, lifespan and homeostatic regulation. Eur J Immunol. 1976 Feb;6(2):75–81. doi: 10.1002/eji.1830060202. [DOI] [PubMed] [Google Scholar]
  29. Sato V. L., Waksal S. D., Herzenberg L. A. Identification and separation of pre T-cells from nu/nu mice: differentiation by preculture with thymic reticuloepithelial cells. Cell Immunol. 1976 Jun 1;24(1):173–185. doi: 10.1016/0008-8749(76)90142-8. [DOI] [PubMed] [Google Scholar]
  30. Schedi M. P., Goldstein G., Boyce E. A. Differentiation of T cells in nude mice. Science. 1975 Dec 19;190(4220):1211–1213. [PubMed] [Google Scholar]
  31. Seed J. R., Gam A. A. Passive immunity to experimental trypanosomiasis. J Parasitol. 1966 Dec;52(6):1134–1140. [PubMed] [Google Scholar]
  32. Takayanagi T., Kambara H., Enriquez G. L. Trypanosoma gambiense: immunity with spleen cell and antiserum transfer in mice. Exp Parasitol. 1973 Jun;33(3):429–432. doi: 10.1016/0014-4894(73)90109-4. [DOI] [PubMed] [Google Scholar]
  33. Urquhart G. M., Murray M., Murray P. K., Jennings F. W., Bate E. Immunosuppression in Trypanosoma brucei infections in rats and mice. Trans R Soc Trop Med Hyg. 1973;67(4):528–535. doi: 10.1016/0035-9203(73)90083-7. [DOI] [PubMed] [Google Scholar]
  34. Wiener E., Bandieri A. Differences in antigen handling by peritoneal macrophages from the Biozzi high and low responder lines of mice. Eur J Immunol. 1974 Jul;4(7):457–463. doi: 10.1002/eji.1830040703. [DOI] [PubMed] [Google Scholar]
  35. Williamson A. R., Askonas B. A. Senescence of an antibody-forming cell clone. Nature. 1972 Aug 11;238(5363):337–339. doi: 10.1038/238337a0. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES