Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1988 Aug;73(2):191–197.

Polyspecific human and murine antibodies to diphtheria and tetanus toxoids and phospholipids.

M Sutjita 1, A Hohmann 1, R Comacchio 1, J Bradley 1
PMCID: PMC1541618  PMID: 3263226

Abstract

Human-human hybridomas produced from lymphocytes of normal individuals yielded seven clones producing monoclonal antibody reacting with tetanus toxoid. Three of these antibodies cross-reacted with diphtheria toxoid. These three and two others also reacted with cardiolipin and two with other phospholipids. One of the seven antibodies reacted with tetanus and diphtheria toxoids, cardiolipin and single-stranded DNA. All seven antibodies were IgM. To examine further this unusual cross-reactivity serum antibodies from patients with SLE and healthy individuals were affinity-purified to yield diphtheria toxoid antibodies. Six out of nine of these anti-diphtheria preparations contained IgG antibodies which cross-reacted with tetanus toxoid and two of these also reacted with cardiolipin; four preparations cross-reacted with DNA. Anti-cardiolipin and anti-DNA cross-reactivity were found in preparations from both normal and SLE sera. Similar cross-reactivities were demonstrated using four mouse monoclonal IgM antibodies raised against phospholipids. All four of these antibodies reacted with both cardiolipin and tetanus toxoid and two also reacted with diphtheria toxoid and DNA. Using a thiocyanate elution procedure, it was shown that the cross-reactivity of the monoclonal antibodies was not related to their relative affinities. The results clearly indicate that cross-reactive epitopes occur on routinely used toxoid vaccines and self antigens. Antibodies which bind to these cross-reactive epitopes are common and are not restricted in isotype, affinity or species of origin.

Full text

PDF
191

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. André-Schwartz J., Datta S. K., Shoenfeld Y., Isenberg D. A., Stollar B. D., Schwartz R. S. Binding of cytoskeletal proteins by monoclonal anti-DNA lupus autoantibodies. Clin Immunol Immunopathol. 1984 May;31(2):261–271. doi: 10.1016/0090-1229(84)90246-0. [DOI] [PubMed] [Google Scholar]
  2. Avrameas S., Dighiero G., Lymberi P., Guilbert B. Studies on natural antibodies and autoantibodies. Ann Immunol (Paris) 1983 Jul-Aug;134D(1):103–113. [PubMed] [Google Scholar]
  3. Cairns E., Block J., Bell D. A. Anti-DNA autoantibody-producing hybridomas of normal human lymphoid cell origin. J Clin Invest. 1984 Sep;74(3):880–887. doi: 10.1172/JCI111505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cairns E., Komar R., Bell D. A. Cytoskeletal binding of monoclonal anti-DNA antibodies derived from tonsillar lymphoid cells of a normal subject. Arthritis Rheum. 1986 Nov;29(11):1351–1358. doi: 10.1002/art.1780291107. [DOI] [PubMed] [Google Scholar]
  5. Carroll P., Stafford D., Schwartz R. S., Stollar B. D. Murine monoclonal anti-DNA autoantibodies bind to endogenous bacteria. J Immunol. 1985 Aug;135(2):1086–1090. [PubMed] [Google Scholar]
  6. Croce C. M., Linnenbach A., Hall W., Steplewski Z., Koprowski H. Production of human hybridomas secreting antibodies to measles virus. Nature. 1980 Dec 4;288(5790):488–489. doi: 10.1038/288488a0. [DOI] [PubMed] [Google Scholar]
  7. Cunningham M. W., Hall N. K., Krisher K. K., Spanier A. M. A study of anti-group A streptococcal monoclonal antibodies cross-reactive with myosin. J Immunol. 1986 Jan;136(1):293–298. [PubMed] [Google Scholar]
  8. Dighiero G., Lymberi P., Mazié J. C., Rouyre S., Butler-Browne G. S., Whalen R. G., Avrameas S. Murine hybridomas secreting natural monoclonal antibodies reacting with self antigens. J Immunol. 1983 Nov;131(5):2267–2272. [PubMed] [Google Scholar]
  9. Fagraeus A., Orvell C., Norberg R., Norrby E. Monoclonal antibodies to epitopes shared by actin and vimentin obtained by paramyxovirus immunization. Exp Cell Res. 1983 May;145(2):425–432. doi: 10.1016/0014-4827(83)90021-6. [DOI] [PubMed] [Google Scholar]
  10. Fujinami R. S., Oldstone M. B., Wroblewska Z., Frankel M. E., Koprowski H. Molecular mimicry in virus infection: crossreaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2346–2350. doi: 10.1073/pnas.80.8.2346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gardner I. D. An enzyme immunoassay for rapid isotyping of monoclonal antibodies. Pathology. 1985 Jan;17(1):64–66. doi: 10.3109/00313028509063727. [DOI] [PubMed] [Google Scholar]
  12. Guilbert B., Dighiero G., Avrameas S. Naturally occurring antibodies against nine common antigens in human sera. I. Detection, isolation and characterization. J Immunol. 1982 Jun;128(6):2779–2787. [PubMed] [Google Scholar]
  13. Harris E. N., Gharavi A. E., Boey M. L., Patel B. M., Mackworth-Young C. G., Loizou S., Hughes G. R. Anticardiolipin antibodies: detection by radioimmunoassay and association with thrombosis in systemic lupus erythematosus. Lancet. 1983 Nov 26;2(8361):1211–1214. doi: 10.1016/s0140-6736(83)91267-9. [DOI] [PubMed] [Google Scholar]
  14. Harris E. N., Gharavi A. E., Hughes G. R. Anti-phospholipid antibodies. Clin Rheum Dis. 1985 Dec;11(3):591–609. [PubMed] [Google Scholar]
  15. Jacob L., Lety M. A., Louvard D., Bach J. F. Binding of a monoclonal anti-DNA autoantibody to identical protein(s) present at the surface of several human cell types involved in lupus pathogenesis. J Clin Invest. 1985 Jan;75(1):315–317. doi: 10.1172/JCI111692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. James K., Bell G. T. Human monoclonal antibody production. Current status and future prospects. J Immunol Methods. 1987 Jun 26;100(1-2):5–40. doi: 10.1016/0022-1759(87)90170-0. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lafer E. M., Rauch J., Andrzejewski C., Jr, Mudd D., Furie B., Furie B., Schwartz R. S., Stollar B. D. Polyspecific monoclonal lupus autoantibodies reactive with both polynucleotides and phospholipids. J Exp Med. 1981 Apr 1;153(4):897–909. doi: 10.1084/jem.153.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Naparstek Y., Duggan D., Schattner A., Madaio M. P., Goni F., Frangione B., Stollar B. D., Kabat E. A., Schwartz R. S. Immunochemical similarities between monoclonal antibacterial Waldenstrom's macroglobulins and monoclonal anti-DNA lupus autoantibodies. J Exp Med. 1985 Jun 1;161(6):1525–1538. doi: 10.1084/jem.161.6.1525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Olsson L., Kaplan H. S. Human-human hybridomas producing monoclonal antibodies of predefined antigenic specificity. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5429–5431. doi: 10.1073/pnas.77.9.5429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rauch J., Tannenbaum H., Straaton K., Massicotte H., Wild J. Human-human hybridoma autoantibodies with both anti-DNA and rheumatoid factor activities. J Clin Invest. 1986 Jan;77(1):106–112. doi: 10.1172/JCI112263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rhodes G., Rumpold H., Kurki P., Patrick K. M., Carson D. A., Vaughan J. H. Autoantibodies in infectious mononucleosis have specificity for the glycine-alanine repeating region of the Epstein-Barr virus nuclear antigen. J Exp Med. 1987 Apr 1;165(4):1026–1040. doi: 10.1084/jem.165.4.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shoenfeld Y., Rauch J., Massicotte H., Datta S. K., André-Schwartz J., Stollar B. D., Schwartz R. S. Polyspecificity of monoclonal lupus autoantibodies produced by human-human hybridomas. N Engl J Med. 1983 Feb 24;308(8):414–420. doi: 10.1056/NEJM198302243080802. [DOI] [PubMed] [Google Scholar]
  24. Shoenfeld Y., Vilner Y., Coates A. R., Rauch J., Lavie G., Shaul D., Pinkhas J. Monoclonal anti-tuberculosis antibodies react with DNA, and monoclonal anti-DNA autoantibodies react with Mycobacterium tuberculosis. Clin Exp Immunol. 1986 Nov;66(2):255–261. [PMC free article] [PubMed] [Google Scholar]
  25. Srinivasappa J., Saegusa J., Prabhakar B. S., Gentry M. K., Buchmeier M. J., Wiktor T. J., Koprowski H., Oldstone M. B., Notkins A. L. Molecular mimicry: frequency of reactivity of monoclonal antiviral antibodies with normal tissues. J Virol. 1986 Jan;57(1):397–401. doi: 10.1128/jvi.57.1.397-401.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Steinitz M., Klein G., Koskimies S., Makel O. EB virus-induced B lymphocyte cell lines producing specific antibody. Nature. 1977 Sep 29;269(5627):420–422. doi: 10.1038/269420a0. [DOI] [PubMed] [Google Scholar]
  27. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Uhlig H., Rutter G., Dernick R. Self-reactive B lymphocytes detected in young adults, children and newborns after in vitro infection with Epstein-Barr virus. Clin Exp Immunol. 1985 Oct;62(1):75–84. [PMC free article] [PubMed] [Google Scholar]
  29. Volk W. A., Bizzini B., Snyder R. M., Bernhard E., Wagner R. R. Neutralization of tetanus toxin by distinct monoclonal antibodies binding to multiple epitopes on the toxin molecule. Infect Immun. 1984 Sep;45(3):604–609. doi: 10.1128/iai.45.3.604-609.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Voller A., Bidwell D. E. A simple method for detecting antibodies to rubella. Br J Exp Pathol. 1975 Aug;56(4):338–339. [PMC free article] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES