Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1988 Sep;73(3):505–509.

Leukoregulin-induced translocation of protein kinase C activity in K562 cells.

S C Barnett 1, C H Evans 1
PMCID: PMC1541748  PMID: 2850124

Abstract

Leukoregulin's effect on biochemical pathways involving Ca2+ was assessed in K562 erythroleukemia cells in which the antitumor lymphokine induces a rapidly reversible increase in plasma membrane permeability. Leukoregulin exposure activates protein kinase C but does not alter levels of phosphoinositol metabolites, calmodulin or cAMP. The activation pattern of protein kinase C differs from that induced by phorbol myristic acid (PMA), a potent activator of protein kinase C. PMA-induced translocation of protein kinase C from the cytosol to the plasma membrane is maximal by 2 min after addition of PMA whereas after leukoregulin treatment protein kinase C translocation reaches a maximum at 2 h. This suggests that leukoregulin activates protein kinase C via a non-classical phosphoinositol pathway as opposed to direct binding to protein kinase C as occurs with PMA. The temporal kinetics of the protein kinase C translocation and the increase in membrane permeability induced by leukoregulin are similar suggesting that phosphorylation of a membrane protein may be involved in the target cell destabilization of the plasma membrane by this lymphokine.

Full text

PDF
505

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnett S. C., Evans C. H. Leukoregulin-increased plasma membrane permeability and associated ionic fluxes. Cancer Res. 1986 Jun;46(6):2686–2692. [PubMed] [Google Scholar]
  2. Berridge M. J., Dawson R. M., Downes C. P., Heslop J. P., Irvine R. F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. doi: 10.1042/bj2120473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345–360. doi: 10.1042/bj2200345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Besterman J. M., Duronio V., Cuatrecasas P. Rapid formation of diacylglycerol from phosphatidylcholine: a pathway for generation of a second messenger. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6785–6789. doi: 10.1073/pnas.83.18.6785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boynton A. L., Whitfield J. Calmodulin and cyclic AMP-dependent protein kinases mediate calcium-induced stimulation of DNA synthesis by rat liver cells. Adv Cyclic Nucleotide Res. 1981;14:411–419. [PubMed] [Google Scholar]
  6. Chafouleas J. G., Dedman J. R., Munjaal R. P., Means A. R. Calmodulin. Development and application of a sensitive radioimmunoassay. J Biol Chem. 1979 Oct 25;254(20):10262–10267. [PubMed] [Google Scholar]
  7. Chida K., Hashiba H., Sasaki K., Kuroki T. Activation of protein kinase C and specific phosphorylation of a Mr 90,000 membrane protein of promotable BALB/3T3 and C3H/10T1/2 cells by tumor promoters. Cancer Res. 1986 Mar;46(3):1055–1062. [PubMed] [Google Scholar]
  8. Dean N. M., Moyer J. D. Separation of multiple isomers of inositol phosphates formed in GH3 cells. Biochem J. 1987 Mar 1;242(2):361–366. doi: 10.1042/bj2420361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Farrar W. L., Anderson W. B. Interleukin-2 stimulates association of protein kinase C with plasma membrane. Nature. 1985 May 16;315(6016):233–235. doi: 10.1038/315233a0. [DOI] [PubMed] [Google Scholar]
  10. Farrar W. L., Thomas T. P., Anderson W. B. Altered cytosol/membrane enzyme redistribution on interleukin-3 activation of protein kinase C. Nature. 1985 May 16;315(6016):235–237. doi: 10.1038/315235a0. [DOI] [PubMed] [Google Scholar]
  11. Forsbeck K., Nilsson K., Hansson A., Skoglund G., Ingelman-Sundberg M. Phorbol ester-induced alteration of differentiation and proliferation in human hematopoietic tumor cell lines: relationship to the presence and subcellular distribution of protein kinase C. Cancer Res. 1985 Dec;45(12 Pt 1):6194–6199. [PubMed] [Google Scholar]
  12. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Linden D. J., Murakami K., Routtenberg A. A newly discovered protein kinase C activator (oleic acid) enhances long-term potentiation in the intact hippocampus. Brain Res. 1986 Aug 6;379(2):358–363. doi: 10.1016/0006-8993(86)90790-0. [DOI] [PubMed] [Google Scholar]
  14. Murakami K., Routtenberg A. Direct activation of purified protein kinase C by unsaturated fatty acids (oleate and arachidonate) in the absence of phospholipids and Ca2+. FEBS Lett. 1985 Nov 18;192(2):189–193. doi: 10.1016/0014-5793(85)80105-8. [DOI] [PubMed] [Google Scholar]
  15. Nishizuka Y., Takai Y., Kishimoto A., Kikkawa U., Kaibuchi K. Phospholipid turnover in hormone action. Recent Prog Horm Res. 1984;40:301–345. doi: 10.1016/b978-0-12-571140-1.50012-8. [DOI] [PubMed] [Google Scholar]
  16. O'Flaherty J. T., Schmitt J. D., Wykle R. L. Interactions of arachidonate metabolism and protein kinase C in mediating neutrophil function. Biochem Biophys Res Commun. 1985 Mar 29;127(3):916–923. doi: 10.1016/s0006-291x(85)80031-0. [DOI] [PubMed] [Google Scholar]
  17. Parker P. J., Coussens L., Totty N., Rhee L., Young S., Chen E., Stabel S., Waterfield M. D., Ullrich A. The complete primary structure of protein kinase C--the major phorbol ester receptor. Science. 1986 Aug 22;233(4766):853–859. doi: 10.1126/science.3755547. [DOI] [PubMed] [Google Scholar]
  18. Plaut M., Marone G., Thomas L. L., Lichtenstein L. M. Cyclic nucleotides in immune responses and allergy. Adv Cyclic Nucleotide Res. 1980;12:161–172. [PubMed] [Google Scholar]
  19. Ransom J. H., Evans C. H., McCabe R. P., Pomato N., Heinbaugh J. A., Chin M., Hanna M. G., Jr Leukoregulin, a direct-acting anticancer immunological hormone that is distinct from lymphotoxin and interferon. Cancer Res. 1985 Feb;45(2):851–862. [PubMed] [Google Scholar]
  20. Rasmussen H., Barrett P. Q. Calcium messenger system: an integrated view. Physiol Rev. 1984 Jul;64(3):938–984. doi: 10.1152/physrev.1984.64.3.938. [DOI] [PubMed] [Google Scholar]
  21. Rebois R. V., Patel J. Phorbol ester causes desensitization of gonadotropin-responsive adenylate cyclase in a murine Leydig tumor cell line. J Biol Chem. 1985 Jul 5;260(13):8026–8031. [PubMed] [Google Scholar]
  22. Schrey M. P., Rubin R. P. Characterization of a calcium-mediated activation of arachidonic acid turnover in adrenal phospholipids by corticotropin. J Biol Chem. 1979 Nov 25;254(22):11234–11241. [PubMed] [Google Scholar]
  23. Tomlinson S., MacNeil S., Walker S. W., Ollis C. A., Merritt J. E., Brown B. L. Calmodulin and cell function. Clin Sci (Lond) 1984 May;66(5):497–507. doi: 10.1042/cs0660497. [DOI] [PubMed] [Google Scholar]
  24. Tsuruo T., Iida H., Kawabata H., Tsukagoshi S., Sakurai Y. High calcium content of pleiotropic drug-resistant P388 and K562 leukemia and Chinese hamster ovary cells. Cancer Res. 1984 Nov;44(11):5095–5099. [PubMed] [Google Scholar]
  25. Wei J. W., Morris H. P., Hickie R. A. Positive correlation between calmodulin content and hepatoma growth rates. Cancer Res. 1982 Jul;42(7):2571–2574. [PubMed] [Google Scholar]
  26. Whetton A. D., Monk P. N., Consalvey S. D., Downes C. P. The haemopoietic growth factors interleukin 3 and colony stimulating factor-1 stimulate proliferation but do not induce inositol lipid breakdown in murine bone-marrow-derived macrophages. EMBO J. 1986 Dec 1;5(12):3281–3286. doi: 10.1002/j.1460-2075.1986.tb04640.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES