Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1988 Dec;74(3):359–364.

Phenotypic and functional changes in alveolar macrophages contribute to the pathogenesis of pulmonary sarcoidosis.

M A Spiteri 1, S W Clarke 1, L W Poulter 1
PMCID: PMC1542020  PMID: 2466589

Abstract

Bronchoalveolar lavage (BAL) was performed on 10 patients with sarcoidosis and 10 normal volunteers. In each case aliquots of the lavage were used to prepare cytospins on which differential cell counts were performed. Immunocytological methods using monoclonal antibodies RFD1 and RFD7 (identifying dendritic cells and mature macrophages in normal tissues) were performed to identify macrophage subsets. Sarcoid BAL contained a significantly higher proportion of RFD1+ cells (mean 44.7 +/- 10.32% compared to 12.3 +/- 4.0% in normals). Much of this increase was accounted for by a highly significant rise in the proportion of cells with the double phenotype RFD1+/RFD7+ (27.2 +/- 6.1% in sarcoid compared to 7.3 +/- 2.0% in normal). Suspensions of sarcoid and normal BAL were also studied in autologous mixed lymphocyte reactions (AMLR) using peripheral blood mononuclear cells (PBM) as a responder population. AMLRs were therefore set up using BAL, PBM, and BAL with PBM. In each case reactivity was compared to mitomycin treated controls. These studies revealed that sarcoid PBM expressed markedly reduced AMLR reactivity when compared to normal but both sarcoid and normal BAL were relatively unreactive. BAL admixed with PBM suppressed peripheral blood AMLR reactivity in the normals. In sarcoid patients BAL admixed with PBM abolished AMLR completely. We suggest that changes within the BAL macrophage populations in sarcoid patients may significantly influence the pathogenesis of this disease.

Full text

PDF
359

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basham T. Y., Merigan T. C. Recombinant interferon-gamma increases HLA-DR synthesis and expression. J Immunol. 1983 Apr;130(4):1492–1494. [PubMed] [Google Scholar]
  2. Campbell D. A., Poulter L. W., Du Bois R. M. Phenotypic analysis of alveolar macrophages in normal subjects and in patients with interstitial lung disease. Thorax. 1986 Jun;41(6):429–434. doi: 10.1136/thx.41.6.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campbell D. A., Poulter L. W., du Bois R. M. Immunocompetent cells in bronchoalveolar lavage reflect the cell populations in transbronchial biopsies in pulmonary sarcoidosis. Am Rev Respir Dis. 1985 Dec;132(6):1300–1306. doi: 10.1164/arrd.1985.132.6.1300. [DOI] [PubMed] [Google Scholar]
  4. Campbell D. A., du Bois R. M., Butcher R. G., Poulter L. W. The density of HLA-DR antigen expression on alveolar macrophages is increased in pulmonary sarcoidosis. Clin Exp Immunol. 1986 Jul;65(1):165–171. [PMC free article] [PubMed] [Google Scholar]
  5. Crystal R. G., Bitterman P. B., Rennard S. I., Hance A. J., Keogh B. A. Interstitial lung diseases of unknown cause. Disorders characterized by chronic inflammation of the lower respiratory tract. N Engl J Med. 1984 Jan 26;310(4):235–244. doi: 10.1056/NEJM198401263100406. [DOI] [PubMed] [Google Scholar]
  6. Hance A. J., Douches S., Winchester R. J., Ferrans V. J., Crystal R. G. Characterization of mononuclear phagocyte subpopulations in the human lung by using monoclonal antibodies: changes in alveolar macrophage phenotype associated with pulmonary sarcoidosis. J Immunol. 1985 Jan;134(1):284–292. [PubMed] [Google Scholar]
  7. Hofman F. M., Lopez D., Husmann L., Meyer P. R., Taylor C. R. Heterogeneity of macrophage populations in human lymphoid tissue and peripheral blood. Cell Immunol. 1984 Oct 1;88(1):61–74. doi: 10.1016/0008-8749(84)90052-2. [DOI] [PubMed] [Google Scholar]
  8. Holt P. G., Degebrodt A., O'Leary C., Krska K., Plozza T. T cell activation by antigen-presenting cells from lung tissue digests: suppression by endogenous macrophages. Clin Exp Immunol. 1985 Dec;62(3):586–593. [PMC free article] [PubMed] [Google Scholar]
  9. Hunninghake G. W., Gadek J. E., Fales H. M., Crystal R. G. Human alveolar macrophage-derived chemotactic factor for neutrophils. Stimuli and partial characterization. J Clin Invest. 1980 Sep;66(3):473–483. doi: 10.1172/JCI109878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hunninghake G. W., Garrett K. C., Richerson H. B., Fantone J. C., Ward P. A., Rennard S. I., Bitterman P. B., Crystal R. G. Pathogenesis of the granulomatous lung diseases. Am Rev Respir Dis. 1984 Sep;130(3):476–496. doi: 10.1164/arrd.1984.130.3.476. [DOI] [PubMed] [Google Scholar]
  11. Hunninghake G. W. Release of interleukin-1 by alveolar macrophages of patients with active pulmonary sarcoidosis. Am Rev Respir Dis. 1984 Apr;129(4):569–572. [PubMed] [Google Scholar]
  12. Keogh B. A., Hunninghake G. W., Line B. R., Crystal R. G. The alveolitis of pulmonary sarcoidosis. Evaluation of natural history and alveolitis-dependent changes in lung function. Am Rev Respir Dis. 1983 Aug;128(2):256–265. doi: 10.1164/arrd.1983.128.2.256. [DOI] [PubMed] [Google Scholar]
  13. Lipscomb M. F., Lyons C. R., Nunez G., Ball E. J., Stastny P., Vial W., Lem V., Weissler J., Miller L. M. Human alveolar macrophages: HLA-DR-positive macrophages that are poor stimulators of a primary mixed leukocyte reaction. J Immunol. 1986 Jan;136(2):497–504. [PubMed] [Google Scholar]
  14. Lyons C. R., Ball E. J., Toews G. B., Weissler J. C., Stastny P., Lipscomb M. F. Inability of human alveolar macrophages to stimulate resting T cells correlates with decreased antigen-specific T cell-macrophage binding. J Immunol. 1986 Aug 15;137(4):1173–1180. [PubMed] [Google Scholar]
  15. Poulter L. W., Rook G. A., Steele J., Condez A. Influence of 1,25-(OH)2 vitamin D3 and gamma interferon on the phenotype of human peripheral blood monocyte-derived macrophages. Infect Immun. 1987 Sep;55(9):2017–2020. doi: 10.1128/iai.55.9.2017-2020.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rennard S. I., Hunninghake G. W., Bitterman P. B., Crystal R. G. Production of fibronectin by the human alveolar macrophage: mechanism for the recruitment of fibroblasts to sites of tissue injury in interstitial lung diseases. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7147–7151. doi: 10.1073/pnas.78.11.7147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Robinson B. W., McLemore T. L., Crystal R. G. Gamma interferon is spontaneously released by alveolar macrophages and lung T lymphocytes in patients with pulmonary sarcoidosis. J Clin Invest. 1985 May;75(5):1488–1495. doi: 10.1172/JCI111852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Semenzato G., Agostini C., Zambello R., Trentin L., Chilosi M., Angi M. R., Ossi E., Cipriani A., Pizzolo G. Activated T cells with immunoregulatory functions at different sites of involvement in sarcoidosis. Phenotypic and functional evaluations. Ann N Y Acad Sci. 1986;465:56–73. doi: 10.1111/j.1749-6632.1986.tb18481.x. [DOI] [PubMed] [Google Scholar]
  19. Unanue E. R. Antigen-presenting function of the macrophage. Annu Rev Immunol. 1984;2:395–428. doi: 10.1146/annurev.iy.02.040184.002143. [DOI] [PubMed] [Google Scholar]
  20. Venet A., Hance A. J., Saltini C., Robinson B. W., Crystal R. G. Enhanced alveolar macrophage-mediated antigen-induced T-lymphocyte proliferation in sarcoidosis. J Clin Invest. 1985 Jan;75(1):293–301. doi: 10.1172/JCI111688. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES