Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1988 Dec;74(3):471–476.

Different activation pathways involved in antibody-dependent and immune-complexes-triggered cytotoxicity mediated by neutrophils.

J R Geffner 1, M Giordano 1, G Serebrinsky 1, M A Isturiz 1
PMCID: PMC1542033  PMID: 2853017

Abstract

We have shown previously that normal human neutrophils triggered by immune complexes displayed significant levels of cytotoxicity towards non-sensitized target cells (non-specific cytotoxicity-NSC) (Geffner, J. R. et al. 1987). Despite the fact that NSC and antibody-dependent cellular cytotoxicity (ADCC) are both mediated through neutrophil Fc gamma R and require the activation of the respiratory burst, the cytolytic mechanisms involved in each case appear to be different. In order to analyse the pathways of activation involved in the induction of NSC and ADCC, we studied here some of the metabolic requirements associated with each cytotoxic function. Our results suggest that ADCC is dependent on Na+/H+ antiporter activity, de novo protein synthesis, availability of external Ca2+ and calmodulin activity, activation of phospholipase C and activation of protein kinase C. On the other hand, NSC appears to be dependent on availability of external Ca2+ and calmodulin activity and activation of phospholipase A2. These results indicate that different pathways of activation are involved in the induction of neutrophil-mediated ADCC and NSC.

Full text

PDF
471

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aderem A. A., Scott W. A., Cohn Z. A. Evidence for sequential signals in the induction of the arachidonic acid cascade in macrophages. J Exp Med. 1986 Jan 1;163(1):139–154. doi: 10.1084/jem.163.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blackwell G. J., Flower R. J. Inhibition of phospholipase. Br Med Bull. 1983 Jul;39(3):260–264. doi: 10.1093/oxfordjournals.bmb.a071830. [DOI] [PubMed] [Google Scholar]
  3. Borregaard N., Kragballe K. Role of oxygen in antibody-dependent cytotoxicity mediated by monocytes and neutrophils. J Clin Invest. 1980 Oct;66(4):676–683. doi: 10.1172/JCI109904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Busa W. B., Nuccitelli R. Metabolic regulation via intracellular pH. Am J Physiol. 1984 Apr;246(4 Pt 2):R409–R438. doi: 10.1152/ajpregu.1984.246.4.R409. [DOI] [PubMed] [Google Scholar]
  5. Clark R. A., Klebanoff S. J. Studies on the mechanism of antibody-dependent polymorphonuclear leukocyte-mediated cytotoxicity. J Immunol. 1977 Oct;119(4):1413–1418. [PubMed] [Google Scholar]
  6. Gale R. P., Zighelboim J. Modulation of polymorphonuclear leukocyte-mediated antibody-dependent cellular cytotoxicity. J Immunol. 1974 Dec;113(6):1793–1800. [PubMed] [Google Scholar]
  7. Geffner J. R., Giordano M., Palermo M. S., Prat A., Serebrinsky G. P., Isturiz M. A. Neutrophil-mediated cytotoxicity triggered by immune complexes: the role of reactive oxygen metabolites. Clin Exp Immunol. 1987 Sep;69(3):668–675. [PMC free article] [PubMed] [Google Scholar]
  8. Geffner J. R., Giordano M., Serebrinsky G., Isturiz M. The role of reactive oxygen intermediates in nonspecific monocyte cytotoxicity induced by immune complexes. Clin Exp Immunol. 1987 Mar;67(3):646–654. [PMC free article] [PubMed] [Google Scholar]
  9. Geffner J. R., Serebrinsky G., Isturiz M. A. Normal human serum restores the expression of Fc gamma receptors in immune complex-blocked human mononuclear cells. Immunology. 1986 Oct;59(2):239–243. [PMC free article] [PubMed] [Google Scholar]
  10. Gerard C., McPhail L. C., Marfat A., Stimler-Gerard N. P., Bass D. A., McCall C. E. Role of protein kinases in stimulation of human polymorphonuclear leukocyte oxidative metabolism by various agonists. Differential effects of a novel protein kinase inhibitor. J Clin Invest. 1986 Jan;77(1):61–65. doi: 10.1172/JCI112302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giordano M., Geffner J. R., Serebrinsky G. P., Palermo M. S., Isturiz M. A. Different requirements for the induction of antibody-dependent and immune complexes triggered cytotoxicity mediated by monocytes. Immunol Lett. 1988 Feb;17(2):109–113. doi: 10.1016/0165-2478(88)90077-6. [DOI] [PubMed] [Google Scholar]
  12. Grinstein S., Furuya W. Amiloride-sensitive Na+/H+ exchange in human neutrophils: mechanism of activation by chemotactic factors. Biochem Biophys Res Commun. 1984 Jul 31;122(2):755–762. doi: 10.1016/s0006-291x(84)80098-4. [DOI] [PubMed] [Google Scholar]
  13. Hafeman D. G., Lucas Z. J. Polymorphonuclear leukocyte-mediated, antibody-dependent, cellular cytotoxicity against tumor cells: dependence on oxygen and the respiratory burst. J Immunol. 1979 Jul;123(1):55–62. [PubMed] [Google Scholar]
  14. Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
  15. Leffert H. L., Koch K. S., Fehlmann M., Heiser W., Lad P. J., Skelly H. Amiloride blocks cell-free protein synthesis at levels attained inside cultured rat hepatocytes. Biochem Biophys Res Commun. 1982 Sep 30;108(2):738–745. doi: 10.1016/0006-291x(82)90891-9. [DOI] [PubMed] [Google Scholar]
  16. Maridonneau-Parini I., Tauber A. I. Activation of NADPH-oxidase by arachidonic acid involves phospholipase A2 in intact human neutrophils but not in the cell-free system. Biochem Biophys Res Commun. 1986 Aug 14;138(3):1099–1105. doi: 10.1016/s0006-291x(86)80395-3. [DOI] [PubMed] [Google Scholar]
  17. Rossi F. The O2- -forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim Biophys Acta. 1986 Nov 4;853(1):65–89. doi: 10.1016/0304-4173(86)90005-4. [DOI] [PubMed] [Google Scholar]
  18. Sato M., Nakamura T., Koyama J. Different abilities of two distinct Fc gamma receptors on guinea pig polymorphonuclear leukocytes to trigger the arachidonic acid metabolic cascade. FEBS Lett. 1987 Nov 16;224(1):29–32. doi: 10.1016/0014-5793(87)80416-7. [DOI] [PubMed] [Google Scholar]
  19. Seifter J. L., Aronson P. S. Properties and physiologic roles of the plasma membrane sodium-hydrogen exchanger. J Clin Invest. 1986 Oct;78(4):859–864. doi: 10.1172/JCI112671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Smolen J. E., Korchak H. M., Weissmann G. The roles of extracellular and intracellular calcium in lysosomal enzyme release and superoxide anion generation by human neutrophils. Biochim Biophys Acta. 1981 Nov 5;677(3-4):512–520. doi: 10.1016/0304-4165(81)90267-1. [DOI] [PubMed] [Google Scholar]
  21. Sándor M., Füst G., Medgyesi G. A., Gergely J. Isolation and characterization of Fc-receptors shed from human peripheral mononuclear cells. Immunology. 1978 Sep;35(3):559–566. [PMC free article] [PubMed] [Google Scholar]
  22. Tsunawaki S., Nathan C. F. Release of arachidonate and reduction of oxygen. Independent metabolic bursts of the mouse peritoneal macrophage. J Biol Chem. 1986 Sep 5;261(25):11563–11570. [PubMed] [Google Scholar]
  23. Walenga R., Vanderhoek J. Y., Feinstein M. B. Serine esterase inhibitors block stimulus-induced mobilization of arachidonic acid and phosphatidylinositide-specific phospholipase C activity in platelets. J Biol Chem. 1980 Jul 10;255(13):6024–6027. [PubMed] [Google Scholar]
  24. Walsh C. E., Waite B. M., Thomas M. J., DeChatelet L. R. Release and metabolism of arachidonic acid in human neutrophils. J Biol Chem. 1981 Jul 25;256(14):7228–7234. [PubMed] [Google Scholar]
  25. Wright J., Schwartz J. H., Olson R., Kosowsky J. M., Tauber A. I. Proton secretion by the sodium/hydrogen ion antiporter in the human neutrophil. J Clin Invest. 1986 Mar;77(3):782–788. doi: 10.1172/JCI112375. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES