Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1987 Oct;70(1):127–135.

Processing and presentation of cell-associated varicella-zoster virus antigens by human monocytes.

O Pontesilli 1, P Carotenuto 1, M J Levin 1, D Suez 1, A R Hayward 1
PMCID: PMC1542223  PMID: 2826056

Abstract

To determine whether viral antigens associated with infected cells were processed for presentation to T cells, we cultured human blood mononuclear cells (MNC) from varicella-zoster virus (VZV) immune donors with VZV-infected fibroblasts of known HLA type which had been fixed in 0.05% glutaraldehyde. After 7-8 days of culture thymidine uptake by T4+ cells exceeded that of T8+ cells. Stimulated cells were depleted of adherent cells and restimulated with VZV-infected fibroblasts from donors matched or unmatched with the responder for HLA type in the presence or absence of fresh adherent cells. Proliferation of the VZV-specific blasts required the presence of adherent cells matched with the responder lymphocytes for HLA-DR; conversely, the VZV specific response was not restricted by the MHC of the fibroblasts used in the restimulation assay. Preincubation of the adherent cells with chloroquine inhibited the proliferative response in a dose-dependent manner. These results suggest that VZV antigens on infected cells may be processed by monocytes for presentation to T cells.

Full text

PDF
127

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babbage J., Sigfusson A., Souhami R. L. Antibody-dependent cell-mediated cytotoxicity to Varicella zoster. Clin Exp Immunol. 1984 Oct;58(1):217–222. [PMC free article] [PubMed] [Google Scholar]
  2. Bowden R. A., Levin M. J., Giller R. H., Tubergen D. G., Hayward A. R. Lysis of varicella zoster virus infected cells by lymphocytes from normal humans and immunosuppressed pediatric leukaemic patients. Clin Exp Immunol. 1985 May;60(2):387–395. [PMC free article] [PubMed] [Google Scholar]
  3. Bowden R. A., McGavren L., Hayward A. R., Levin M. J. Use of bone marrow fibroblasts to prepare targets for an HLA restricted-cytotoxicity assay system. J Clin Microbiol. 1984 Oct;20(4):696–700. doi: 10.1128/jcm.20.4.696-700.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brodsky F. M., Parham P. Monomorphic anti-HLA-A,B,C monoclonal antibodies detecting molecular subunits and combinatorial determinants. J Immunol. 1982 Jan;128(1):129–135. [PubMed] [Google Scholar]
  5. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  6. Chilmonczyk B. A., Levin M. J., McDuffy R., Hayward A. R. Characterization of the human newborn response to herpesvirus antigen. J Immunol. 1985 Jun;134(6):4184–4188. [PubMed] [Google Scholar]
  7. Engleman E. G., Benike C. J., Grumet F. C., Evans R. L. Activation of human T lymphocyte subsets: helper and suppressor/cytotoxic T cells recognize and respond to distinct histocompatibility antigens. J Immunol. 1981 Nov;127(5):2124–2129. [PubMed] [Google Scholar]
  8. Golding H., Singer A. Role of accessory cell processing and presentation of shed H-2 alloantigens in allospecific cytotoxic T lymphocyte responses. J Immunol. 1984 Aug;133(2):597–605. [PubMed] [Google Scholar]
  9. Hayward A. R., Pontesilli O., Herberger M., Laszlo M., Levin M. Specific lysis of varicella zoster virus-infected B lymphoblasts by human T cells. J Virol. 1986 Apr;58(1):179–184. doi: 10.1128/jvi.58.1.179-184.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Henney C. S., Kuribayashi K., Kern D. E., Gillis S. Interleukin-2 augments natural killer cell activity. Nature. 1981 May 28;291(5813):335–338. doi: 10.1038/291335a0. [DOI] [PubMed] [Google Scholar]
  11. Herberman R. R., Ortaldo J. R., Bonnard G. D. Augmentation by interferon of human natural and antibody-dependent cell-mediated cytotoxicity. Nature. 1979 Jan 18;277(5693):221–223. doi: 10.1038/277221a0. [DOI] [PubMed] [Google Scholar]
  12. Jordan G. W., Merigan T. C. Cell-mediated immunity to varicella-zoster virus: in vitro lymphocyte responses. J Infect Dis. 1974 Nov;130(5):495–501. doi: 10.1093/infdis/130.5.495. [DOI] [PubMed] [Google Scholar]
  13. Kumagai T., Chiba Y., Wataya Y., Hanazono H., Chiba S., Nakao T. Development and characteristics of the cellular immune response to infection with varicella-zoster virus. J Infect Dis. 1980 Jan;141(1):7–13. doi: 10.1093/infdis/141.1.7. [DOI] [PubMed] [Google Scholar]
  14. Lane H. C., Volkman D. J., Whalen G., Fauci A. S. In vitro antigen-induced, antigen-specific antibody production in man. Specific and polyclonal components, kinetics, and cellular requirements. J Exp Med. 1981 Oct 1;154(4):1043–1057. doi: 10.1084/jem.154.4.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nowell J., Quaranta V. Chloroquine affects biosynthesis of Ia molecules by inhibiting dissociation of invariant (gamma) chains from alpha-beta dimers in B cells. J Exp Med. 1985 Oct 1;162(4):1371–1376. doi: 10.1084/jem.162.4.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Patel P. A., Yoonessi S., O'Malley J., Freeman A., Gershon A., Ogra P. L. Cell-mediated immunity to varicella-zoster virus infection in subjects with lymphoma or leukemia. J Pediatr. 1979 Feb;94(2):223–230. doi: 10.1016/s0022-3476(79)80828-8. [DOI] [PubMed] [Google Scholar]
  17. Pober J. S., Collins T., Gimbrone M. A., Jr, Cotran R. S., Gitlin J. D., Fiers W., Clayberger C., Krensky A. M., Burakoff S. J., Reiss C. S. Lymphocytes recognize human vascular endothelial and dermal fibroblast Ia antigens induced by recombinant immune interferon. Nature. 1983 Oct 20;305(5936):726–729. doi: 10.1038/305726a0. [DOI] [PubMed] [Google Scholar]
  18. SCHMIDT N. J., LENNETTE E. H., SHON C. W., SHINOMOTO T. T. A COMPLEMENT-FIXING ANTIGEN FOR VARICELLA-ZOSTER DERIVED FROM INFECTED CULTURES OF HUMAN FETAL DIPLOID CELLS. Proc Soc Exp Biol Med. 1964 May;116:144–149. doi: 10.3181/00379727-116-29184. [DOI] [PubMed] [Google Scholar]
  19. Schmitt C., Ballet J. J., Agrapart M., Bizzini B. Human T cell clones specific for tetanus toxoid: characterization of antigen specificity and HLA restriction. Eur J Immunol. 1982 Oct;12(10):849–854. doi: 10.1002/eji.1830121010. [DOI] [PubMed] [Google Scholar]
  20. Shimonkevitz R., Kappler J., Marrack P., Grey H. Antigen recognition by H-2-restricted T cells. I. Cell-free antigen processing. J Exp Med. 1983 Aug 1;158(2):303–316. doi: 10.1084/jem.158.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Souhami R. L., Babbage J., Callard R. E. Specific in vitro antibody response to varicella zoster. Clin Exp Immunol. 1981 Oct;46(1):98–105. [PMC free article] [PubMed] [Google Scholar]
  22. Streicher H. Z., Berkower I. J., Busch M., Gurd F. R., Berzofsky J. A. Antigen conformation determines processing requirements for T-cell activation. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6831–6835. doi: 10.1073/pnas.81.21.6831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Suez D., Hayward A. R. Phenotyping of proliferating cells in cultures of human lymphocytes. J Immunol Methods. 1985 Apr 8;78(1):49–57. doi: 10.1016/0022-1759(85)90328-x. [DOI] [PubMed] [Google Scholar]
  24. Unanue E. R. Antigen-presenting function of the macrophage. Annu Rev Immunol. 1984;2:395–428. doi: 10.1146/annurev.iy.02.040184.002143. [DOI] [PubMed] [Google Scholar]
  25. Zaia J. A., Leary P. L., Levin M. J. Specificity of the blastogenic response of human mononuclear cells to herpesvirus antigens. Infect Immun. 1978 Jun;20(3):646–651. doi: 10.1128/iai.20.3.646-651.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zaia J. A., Oxman M. N. Antibody to varicella-zoster virus-induced membrane antigen: immunofluorescence assay using monodisperse glutaraldehyde-fixed target cells. J Infect Dis. 1977 Oct;136(4):519–530. doi: 10.1093/infdis/136.4.519. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES