Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1987 Jul;69(1):10–15.

Soluble serum interleukin 2 receptor levels in leprosy patients

K S K Tung, Edith Umland, P Matzner, K Nelson, Victoria Schauf, L Rubin, D Wagner, D Scollard, Prakong Vithayasai, Vicharn Vithayasai, Sophie Worobec, T Smith, Vinai Suriyanond
PMCID: PMC1542234  PMID: 3115652

Abstract

Soluble interleukin 2 receptors (IL-2R) in sera of leprosy patients from Chiang Mai, Thailand, were quantified with a solid phase enzyme immunoassay using two monoclonal antibodies to the IL-2R. The IL-2R levels of untreated lepromatous, borderline lepromatous or midborderline patients and treated lepromatous and borderline lepromatous or treated borderline tuberculoid and tuberculoid patients were comparable to those of the Thai household or nonhousehold contacts; and they were significantly higher than the levels of USA control subjects. In contrast, IL-2R of untreated tuberculoid or borderline tuberculoid patients were significantly reduced. Patients with ongoing reversal reaction had very high circulating IL-2R, the levels of which correlated with fever and extent of skin lesions. Although erythrema nodosum leprosum patients also had elevated IL-2R levels, they were significantly below those of patients with reversal reaction. When treated with corticosteroid, precipitous reduction of IL-2R was noted in all patients with reversal reaction but not in patients with erythema nodosum leprosum.

Full text

PDF
10

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cantrell D. A., Smith K. A. The interleukin-2 T-cell system: a new cell growth model. Science. 1984 Jun 22;224(4655):1312–1316. doi: 10.1126/science.6427923. [DOI] [PubMed] [Google Scholar]
  2. Modlin R. L., Gebhard J. F., Taylor C. R., Rea T. H. In situ characterization of T lymphocyte subsets in the reactional states of leprosy. Clin Exp Immunol. 1983 Jul;53(1):17–24. [PMC free article] [PubMed] [Google Scholar]
  3. Modlin R. L., Hofman F. M., Horwitz D. A., Husmann L. A., Gillis S., Taylor C. R., Rea T. H. In situ identification of cells in human leprosy granulomas with monoclonal antibodies to interleukin 2 and its receptor. J Immunol. 1984 Jun;132(6):3085–3090. [PubMed] [Google Scholar]
  4. Mshana R. N. Hypothesis: erythema nodosum leprosum is precipitated by an imbalance of T lymphocytes. Lepr Rev. 1982 Mar;53(1):1–7. doi: 10.5935/0305-7518.19820001. [DOI] [PubMed] [Google Scholar]
  5. Ridley D. S., Jopling W. H. Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis. 1966 Jul-Sep;34(3):255–273. [PubMed] [Google Scholar]
  6. Ridley D. S., Radia K. B. The histological course of reactions in borderline leprosy and their outcome. Int J Lepr Other Mycobact Dis. 1981 Dec;49(4):383–392. [PubMed] [Google Scholar]
  7. Rubin L. A., Kurman C. C., Biddison W. E., Goldman N. D., Nelson D. L. A monoclonal antibody 7G7/B6, binds to an epitope on the human interleukin-2 (IL-2) receptor that is distinct from that recognized by IL-2 or anti-Tac. Hybridoma. 1985 Summer;4(2):91–102. doi: 10.1089/hyb.1985.4.91. [DOI] [PubMed] [Google Scholar]
  8. Rubin L. A., Kurman C. C., Fritz M. E., Biddison W. E., Boutin B., Yarchoan R., Nelson D. L. Soluble interleukin 2 receptors are released from activated human lymphoid cells in vitro. J Immunol. 1985 Nov;135(5):3172–3177. [PubMed] [Google Scholar]
  9. Waters M. F., Turk J. L., Wemambu S. N. Mechanisms of reactions in leprosy. Int J Lepr Other Mycobact Dis. 1971 Apr-Jun;39(2):417–428. [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES