Abstract
The influence of the cytomegalovirus (CMV) carrier status on peripheral lymphocyte subsets was studied in 70 healthy individuals. IgG-class antibodies against CMV late antigen were used as markers for the presence of CMV in those individuals. The 39 CMV-seropositive individuals had significantly higher numbers of CD3+ (P = 0.009), CD8+ (P = 0.005) and HNK1+ (P = 0.002) cells than the 31 CMV-seronegative individuals. Two-colour immunofluorescence studies revealed that the HNK1+ cells coexpressing CD4 or high density CD8 were particularly increased in the number under the influence of CMV, but not the HNK1+ cells coexpressing CD16. Since HNK1 and CD16 are markers associated with natural killer (NK) activity and antibody-dependent cellular cytotoxicity (ADCC), we investigated the influence of the CMV carrier status on those functions. The NK and ADCC functions of peripheral blood mononuclear cells (PBMC), HNK1+ and HNK1- cells were correlated with the percentages of CD16+ cells among those cells. Although CMV-seropositive individuals had significantly less CD16+ cells among their HNK1+ cells than CMV-seronegative individuals (mean and s.d.: 39 and 19%, versus 58 and 11%, P = 0.003), the NK and ADCC functions of the HNK1+ cells were similar in both groups. Also, the CMV carrier status did not influence significantly those functions of PBMC and HNK1- cells. We conclude that the CMV carrier status, i.e. CMV-seropositivity, is associated with a significant increase in the numbers of HNK1+ lymphocytes coexpressing T cell markers. That situation may reflect the continuing interaction between CMV and the immune system of its host.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abo T., Balch C. M. A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J Immunol. 1981 Sep;127(3):1024–1029. [PubMed] [Google Scholar]
- Abo T., Cooper M. D., Balch C. M. Characterization of HNK-1+ (Leu-7) human lymphocytes. I. Two distinct phenotypes of human NK cells with different cytotoxic capability. J Immunol. 1982 Oct;129(4):1752–1757. [PubMed] [Google Scholar]
- Abo T., Cooper M. D., Balch C. M. Postnatal expansion of the natural killer and keller cell population in humans identified by the monoclonal HNK-1 antibody. J Exp Med. 1982 Jan 1;155(1):321–326. doi: 10.1084/jem.155.1.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borysiewicz L. K., Rodgers B., Morris S., Graham S., Sissons J. G. Lysis of human cytomegalovirus infected fibroblasts by natural killer cells: demonstration of an interferon-independent component requiring expression of early viral proteins and characterization of effector cells. J Immunol. 1985 Apr;134(4):2695–2701. [PubMed] [Google Scholar]
- Carney W. P., Rubin R. H., Hoffman R. A., Hansen W. P., Healey K., Hirsch M. S. Analysis of T lymphocyte subsets in cytomegalovirus mononucleosis. J Immunol. 1981 Jun;126(6):2114–2116. [PubMed] [Google Scholar]
- Clement L. T., Grossi C. E., Gartland G. L. Morphologic and phenotypic features of the subpopulation of Leu-2+ cells that suppresses B cell differentiation. J Immunol. 1984 Nov;133(5):2461–2468. [PubMed] [Google Scholar]
- Dumble L. J., MacDonald I. M., Kincaid-Smith P. Human renal allograft rejection is predicted by serial determinations of antibody-dependent cellular cytotoxicity. Transplantation. 1980;29(1):30–34. doi: 10.1097/00007890-198001000-00007. [DOI] [PubMed] [Google Scholar]
- Lanier L. L., Le A. M., Phillips J. H., Warner N. L., Babcock G. F. Subpopulations of human natural killer cells defined by expression of the Leu-7 (HNK-1) and Leu-11 (NK-15) antigens. J Immunol. 1983 Oct;131(4):1789–1796. [PubMed] [Google Scholar]
- Legendre C. M., Guttmann R. D., Hou S. K., Jean R. Two-color immunofluorescence and flow cytometry analysis of lymphocytes in long-term renal allotransplant recipients: identification of a major Leu-7+/Leu-3+ subpopulation. J Immunol. 1985 Aug;135(2):1061–1066. [PubMed] [Google Scholar]
- Leroy E., Calvo C. F., Divine M., Gourdin M. F., Baujean F., Ben Aribia M. H., Mishal Z., Vernant J. P., Farcet J. P., Senik A. Persistence of T8+/HNK-1+ suppressor lymphocytes in the blood of long-term surviving patients after allogeneic bone marrow transplantation. J Immunol. 1986 Oct 1;137(7):2180–2189. [PubMed] [Google Scholar]
- Levin M. J., Rinaldo C. R., Jr, Leary P. L., Zaia J. A., Hirsch M. S. Immune response to herpesvirus antigens in adults with acute cytomegaloviral mononucleosis. J Infect Dis. 1979 Dec;140(6):851–857. doi: 10.1093/infdis/140.6.851. [DOI] [PubMed] [Google Scholar]
- Middeldorp J. M., Jongsma J., ter Haar A., Schirm J., The T. H. Detection of immunoglobulin M and G antibodies against cytomegalovirus early and late antigens by enzyme-linked immunosorbent assay. J Clin Microbiol. 1984 Oct;20(4):763–771. doi: 10.1128/jcm.20.4.763-771.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morishita Y., Martin P. J., Bean M. A., Yamada H., Hansen J. A. Antigen-specific functions of a CD4+ subset of human T lymphocytes with granular morphology. J Immunol. 1986 Mar 15;136(6):2095–2102. [PubMed] [Google Scholar]
- Perussia B., Acuto O., Terhorst C., Faust J., Lazarus R., Fanning V., Trinchieri G. Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. II. Studies of B73.1 antibody-antigen interaction on the lymphocyte membrane. J Immunol. 1983 May;130(5):2142–2148. [PubMed] [Google Scholar]
- Perussia B., Fanning V., Trinchieri G. A human NK and K cell subset shares with cytotoxic T cells expression of the antigen recognized by antibody OKT8. J Immunol. 1983 Jul;131(1):223–231. [PubMed] [Google Scholar]
- Perussia B., Starr S., Abraham S., Fanning V., Trinchieri G. Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. I. Characterization of the lymphocyte subset reactive with B73.1. J Immunol. 1983 May;130(5):2133–2141. [PubMed] [Google Scholar]
- Schroff R. W., Gale R. P., Fahey J. L. Regeneration of T cell subpopulations after bone marrow transplantation: cytomegalovirus infection and lymphoid subset imbalance. J Immunol. 1982 Nov;129(5):1926–1930. [PubMed] [Google Scholar]
- Tilden A. B., Abo T., Balch C. M. Suppressor cell function of human granular lymphocytes identified by the HNK-1 (Leu 7) monoclonal antibody. J Immunol. 1983 Mar;130(3):1171–1175. [PubMed] [Google Scholar]
- Verdonck L. F., de Gast G. C. Is cytomegalovirus infection a major cause of T cell alterations after (autologous) bone-marrow transplantation? Lancet. 1984 Apr 28;1(8383):932–935. doi: 10.1016/s0140-6736(84)92391-2. [DOI] [PubMed] [Google Scholar]
- Weller T. H. The cytomegaloviruses: ubiquitous agents with protean clinical manifestations. I. N Engl J Med. 1971 Jul 22;285(4):203–214. doi: 10.1056/NEJM197107222850406. [DOI] [PubMed] [Google Scholar]
- Würsch A. M., Gratama J. W., Middeldorp J. M., Nissen C., Gratwohl A., Speck B., Jansen J., D'Amaro J., The T. H., De Gast G. C. The effect of cytomegalovirus infection on T lymphocytes after allogeneic bone marrow transplantation. Clin Exp Immunol. 1985 Nov;62(2):278–287. [PMC free article] [PubMed] [Google Scholar]
- ten Napel C. H., The T. H. Acute cytomegalovirus infection and the host immune response. I. Development and maintenance of cytomegalovirus (CMV) induced in vitro lymphocyte reactivity and its relationship to the production of CMV antibodies. Clin Exp Immunol. 1980 Feb;39(2):263–271. [PMC free article] [PubMed] [Google Scholar]