Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1986 Jun;64(3):646–655.

Busulfan and chloramphenicol induced T cell lymphoma: cell surface characteristics and functional properties.

N Bhoopalam, K Price, H Norgello, J Barone-Varelas, W Fried
PMCID: PMC1542435  PMID: 2947760

Abstract

We report the immunological studies on three transplantable lymphoma lines that developed when CAF1 mice were injected with busulfan and chloramphenicol. The lymphoma cells displayed Thy-1.2, brain associated antigen, and H-2d alloantigen. They were negative for surface IgM and Ia antigens. Expression of T cell differentiation antigens differed among the three lines. The 508 tumour line displayed only Thy-1.2: 408 tumour line displayed Thy-1.2, Lyt-2.2 and TL; and 808 tumour line was positive for Thy-1.2, Lyt-1.2, Lyt-2.2 and TL antigens. We established in vitro culture lines from 508 and 808 lymphoma cells. The lymphoma cells did not respond to mitogens and antigens. The splenic cells from mice bearing 508 or 808 had decreased phytohaemagglutinin (PHA), concanavalin A (Con A) and mixed leucocyte responses (MLR). When mitomycin-C treated lymphoma cells from the tumour bearing mice were cocultured with normal splenic mononuclear cells, the 808 lymphoma cells suppressed the mitogenic responses of the normal cells more profoundly than 508 lymphoma cells. Adherent cells from both tumours suppressed the Con A responses of normal spleen cells. Cells from in vitro 508 or 808 cell lines had no effect on mitogenic responses of normal cells. Plasma from tumour bearing mice, but not the supernatants taken from cultures of these lymphoma cells, suppressed the mitogenic responses of normal lymphocytes. Spleen cells from normal CAF1 mice responded in mixed leucocyte tumour reactions (MLTR) when cocultured with lymphoma cells. Mice immunized with mitomycin-C treated tumour cells had greater response. Responder cells taken from mice with established 508 or 808 tumors had suppressed MLTR responses. Although prior immunization with tumor antigen increased the MLTR response, injection of live tumour cells into immunized mice resulted in a more rapid tumour growth and suppression of MLTR response.

Full text

PDF
646

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cantor H., Boyse E. A. Functional subclasses of T-lymphocytes bearing different Ly antigens. I. The generation of functionally distinct T-cell subclasses is a differentiative process independent of antigen. J Exp Med. 1975 Jun 1;141(6):1376–1389. doi: 10.1084/jem.141.6.1376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chazan R., Haran-Ghera N. The role of thymus subpopulations in "T" leukemia development. Cell Immunol. 1976 May;23(2):356–375. doi: 10.1016/0008-8749(76)90200-8. [DOI] [PubMed] [Google Scholar]
  3. Elgert K. D., Farrar W. L. Suppressor cell activity in tumor-bearing mice. I. Dualistic inhibition by suppressor T lymphocytes and macrophages. J Immunol. 1978 Apr;120(4):1345–1353. [PubMed] [Google Scholar]
  4. Fujimoto S., Greene M. I., Sehon A. H. Regualtion of the immune response to tumor antigens. I. Immunosuppressor cells in tumor-bearing hosts. J Immunol. 1976 Mar;116(3):791–799. [PubMed] [Google Scholar]
  5. Gershon R. K. A disquisition on suppressor T cells. Transplant Rev. 1975;26:170–185. doi: 10.1111/j.1600-065x.1975.tb00179.x. [DOI] [PubMed] [Google Scholar]
  6. Golub E. S. Brain-associated theta antigen: reactivity of rabbit anti-mouse brain with mouse lymphoid cells. Cell Immunol. 1971 Aug;2(4):353–361. doi: 10.1016/0008-8749(71)90070-0. [DOI] [PubMed] [Google Scholar]
  7. Haran-Ghera N. A leukemogenic filtrable agent from chemically-induced lymphoid leukemia in C57BL mice. Proc Soc Exp Biol Med. 1967 Mar;124(3):697–699. doi: 10.3181/00379727-124-31827. [DOI] [PubMed] [Google Scholar]
  8. Hellström K. E., Hellström I. Cellular immunity against tumor antigens. Adv Cancer Res. 1969;12:167–223. doi: 10.1016/s0065-230x(08)60331-0. [DOI] [PubMed] [Google Scholar]
  9. KAPLAN H. S., BROWN M. B. Protection against radiation-induced lymphoma development by shielding and partial-body irradiation of mice. Cancer Res. 1952 Jun;12(6):441–444. [PubMed] [Google Scholar]
  10. Kim K. J., Weinbaum F. I., Mathieson B. J., McKeever P. E., Asofsky R. Characteristics of BALB/C T cell lymphomas grown as continuous in vitro lines. J Immunol. 1978 Jul;121(1):339–344. [PubMed] [Google Scholar]
  11. Kirkwood J. M., Gershon R. K. A role for suppressor T cells in immunological enhancement of tumor growth. Prog Exp Tumor Res. 1974;19:157–164. doi: 10.1159/000395853. [DOI] [PubMed] [Google Scholar]
  12. Krammer P. H., Citronbaum R., Read S. E., Forni L., Lang R. Murine thymic lymphomas as model tumors for T-cell studies. T-cell markers, immunoglobulin and Fc-receptors on AKR thymomas. Cell Immunol. 1976 Jan;21(1):97–111. doi: 10.1016/0008-8749(76)90331-2. [DOI] [PubMed] [Google Scholar]
  13. Mathieson B. J., Campbell P. S., Potter M., Asofsky R. Expression of Ly 1, Ly 2, Thy 1, and TL differentiation antigens on mouse T-cell tumors. J Exp Med. 1978 Apr 1;147(4):1267–1279. doi: 10.1084/jem.147.4.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Morley A., Blake J. An animal model of chronic aplastic marrow failure. I. Late marrow failure after busulfan. Blood. 1974 Jul;44(1):49–56. [PubMed] [Google Scholar]
  15. Morley A., Trainor K., Remes J. Residual marrow damage: possible explanation for idiosyncrasy to chloramphenicol. Br J Haematol. 1976 Apr;32(4):525–531. doi: 10.1111/j.1365-2141.1976.tb00955.x. [DOI] [PubMed] [Google Scholar]
  16. Naor D. Suppressor cells: permitters and promoters of malignancy? Adv Cancer Res. 1979;29:45–125. doi: 10.1016/s0065-230x(08)60846-5. [DOI] [PubMed] [Google Scholar]
  17. Perper R. J., Zee T. W., Mickelson M. M. Purification of lymphocytes and platelets by gradient centrifugation. J Lab Clin Med. 1968 Nov;72(5):842–848. [PubMed] [Google Scholar]
  18. Perry L. L., Greene M. I. T cell subset interactions in the regulation of syngeneic tumor immunity. Fed Proc. 1981 Jan;40(1):39–44. [PubMed] [Google Scholar]
  19. Pugsley C. A., Forbes I. J., Morley A. A. Immunologic abnormalities in an animal model of chronic hypoplastic marrow failure induced by busulfan. Blood. 1978 Apr;51(4):601–610. [PubMed] [Google Scholar]
  20. Reynolds C. W., Herberman R. B. In vitro augmentation of rat natural killer (NK) cell activity. J Immunol. 1981 Apr;126(4):1581–1585. [PubMed] [Google Scholar]
  21. Robin E., Berman M., Bhoopalam N., Cohen H., Fried W. Induction of lymphomas in mice by busulfan and chloramphenicol. Cancer Res. 1981 Sep;41(9 Pt 1):3478–3482. [PubMed] [Google Scholar]
  22. Roman J. M., Golub E. S. Leukemia in AKR mice. I. Effects of leukemic cells on antibody-forming potential of syngeneic and allogeneic normal cells. J Exp Med. 1976 Mar 1;143(3):482–496. doi: 10.1084/jem.143.3.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Takatsu K., Ishizaka K. Reaginic antibody formation in the mouse. VII. Induction of suppressor T cells for IgE and IgG antibody responses. J Immunol. 1976 May;116(5):1257–1264. [PubMed] [Google Scholar]
  24. Tanapatchaiyapong P., Zolla S. Humoral immunosuppressive substance in mice bearing plasmacytomas. Science. 1974 Nov 22;186(4165):748–750. doi: 10.1126/science.186.4165.748. [DOI] [PubMed] [Google Scholar]
  25. Waldmann T. A., Broder S. Suppressor cells in the regulation of the immune response. Prog Clin Immunol. 1977;3:155–199. [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES