Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 1978 Feb;53(2):136–140. doi: 10.1136/adc.53.2.136

Serial determinations of oxygen profiles in infants with respiratory distress.

W L Holman, A N Krauss, P A Auld
PMCID: PMC1545339  PMID: 646415

Abstract

Serial oxygen profiles were determined for 20 newborn infants by measuring arterial tensions at low (20--40%), intermediate (60--80%), and high (95--100%) levels of inspired oxygen. These points were plotted on a graph which estimated the percentage of venous admixture at any particular level of inspired oxygen. The infants' oxygen profiles were then determined. As much as 25% of venous admixture could be attributed to the presence of diffusion and distribution abnormalities in infants with hyaline membrane disease. A substantial number of infants showed increased shunting at high levels of oxygen, even in the presence of continuous distending airway pressure. It is hypothesised that a rising shunt is due to complete absorption of gas in poorly ventilated alveoli at high concentrations of inspired oxygen, resulting in the presence of atelectasis and redistribution of blood to poorly ventilated areas.

Full text

PDF
136

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASSALI N. S., MORRIS J. A., SMITH R. W., MANSON W. A. STUDIES ON DUCTUS ARTERIOSUS CIRCULATION. Circ Res. 1963 Nov;13:478–489. doi: 10.1161/01.res.13.5.478. [DOI] [PubMed] [Google Scholar]
  2. Boston R. W., Geller F., Smith C. A. Arterial blood gas tensions and acid-base balance in the management of the respiratory distress syndrome. J Pediatr. 1966 Jan;68(1):74–89. doi: 10.1016/s0022-3476(66)80424-9. [DOI] [PubMed] [Google Scholar]
  3. Briscoe W. A., King T. K. Analysis of the disturbance in oxygen transfer in hypoxic lung disease. Am J Med. 1974 Sep;57(3):349–360. doi: 10.1016/0002-9343(74)90130-2. [DOI] [PubMed] [Google Scholar]
  4. Corbet A. J., Ross J. A., Beaudry P. H., Stern L. Ventilation-perfusion relationships as assessed by a ADN2 in hyaline membrane disease. J Appl Physiol. 1974 Jan;36(1):74–81. doi: 10.1152/jappl.1974.36.1.74. [DOI] [PubMed] [Google Scholar]
  5. DALE W. A., RAHN H. Ventilation of the open lung during unilateral experimental atelectasis. J Thorac Surg. 1955 May;29(5):458–466. [PubMed] [Google Scholar]
  6. Davidson F. F., Glazier J. B., Murray J. F. The components of the alveolar-arterial oxygen tension difference in normal subjects and in patients with pneumonia and obstructive lung disease. Am J Med. 1972 Jun;52(6):754–762. doi: 10.1016/0002-9343(72)90081-2. [DOI] [PubMed] [Google Scholar]
  7. Dawes G. S. Pulmonary circulation in the foetus and new-born. Br Med Bull. 1966 Jan;22(1):61–65. doi: 10.1093/oxfordjournals.bmb.a070439. [DOI] [PubMed] [Google Scholar]
  8. Druger G. L., Simmons D. H., Levy S. E. The determination of shunt-like effects and its use in clinical practice. Am Rev Respir Dis. 1973 Nov;108(5):1261–1265. doi: 10.1164/arrd.1973.108.5.1261. [DOI] [PubMed] [Google Scholar]
  9. Duc G. Assessment of hypoxia in the newborn. Suggestions for a practical approach. Pediatrics. 1971 Sep;48(3):469–481. [PubMed] [Google Scholar]
  10. ENSON Y., GIUNTINI C., LEWIS M. L., MORRIS T. Q., FERRER M. I., HARVEY R. M. THE INFLUENCE OF HYDROGEN ION CONCENTRATION AND HYPOXIA ON THE PULMONARY CIRCULATION. J Clin Invest. 1964 Jun;43:1146–1162. doi: 10.1172/JCI104999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FARHI L. E., RAHN H. A theoretical analysis of the alveolar-arterial O2 difference with special reference to the distribution effect. J Appl Physiol. 1955 May;7(6):699–703. doi: 10.1152/jappl.1955.7.6.699. [DOI] [PubMed] [Google Scholar]
  12. Gersony W. M., Duc G. V., Dell R. B., Sinclair J. C. Oxygen method for calculation of right to left shunt: new application in presence of right to left shunting through the ductus arteriosus. Cardiovasc Res. 1972 Jul;6(4):423–438. doi: 10.1093/cvr/6.4.423. [DOI] [PubMed] [Google Scholar]
  13. KOVALCIK V. THE RESPONSE OF THE ISOLATED DUCTUS ARTERIOSUS TO OXYGEN AND ANOXIA. J Physiol. 1963 Nov;169:185–197. doi: 10.1113/jphysiol.1963.sp007249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. King T. K., Weber B., Okinaka A., Friedman S. A., Smith J. P., Briscoe W. A. Oxygen transfer in catastrophic respiratory failure. Chest. 1974 Apr;65(Suppl):40S–44S. doi: 10.1378/chest.65.4_supplement.40s. [DOI] [PubMed] [Google Scholar]
  15. Krauss A. N., Auld P. A. Ventilation-perfusion abnormalities in the premature infant: triple gradient. Pediatr Res. 1969 May;3(3):255–264. doi: 10.1203/00006450-196905000-00010. [DOI] [PubMed] [Google Scholar]
  16. Krauss A. N., Klain D. B., Auld P. A. Carbon monoxide diffusing capacity in newborn infants. Pediatr Res. 1976 Sep;10(9):771–776. doi: 10.1203/00006450-197609000-00001. [DOI] [PubMed] [Google Scholar]
  17. Ledbetter M. K., Homma T., Farhi L. E. Readjustment in distribution of aveolar ventilation and lung perfusion in the newborn. Pediatrics. 1967 Dec;40(6):940–945. [PubMed] [Google Scholar]
  18. MOSS A. J., EMMANOUILIDES G. C., ADAMS F. H., CHUANG K. RESPONSE OF DUCTUS ARTERIOSUS AND PULMONARY AND SYSTEMIC ARTERIAL PRESSURE TO CHANGES IN OXYGEN ENVIRONMENT IN NEWBORN INFANTS. Pediatrics. 1964 Jun;33:937–944. [PubMed] [Google Scholar]
  19. Murdock A. I., Kidd B. S., Llewellyn M. A., Reid M. M., Swyer P. R. Intrapulmonary venous admixture in the respiratory distress syndrome. Biol Neonate. 1970;15(12):1–7. doi: 10.1159/000240204. [DOI] [PubMed] [Google Scholar]
  20. NELSON N. M., PRODHOM L. S., CHERRY R. B., LIPSITZ P. J., SMITH C. A. PULMONARY FUNCTION IN THE NEWBORN INFANT. V. TRAPPED GAS IN THE NORMAL INFANT'S LUNG. J Clin Invest. 1963 Dec;42:1850–1857. doi: 10.1172/JCI104869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Roberton N. R., Gupta J. M., Dahlenburg G. W., Tizard J. P. Oxygen therapy in the newborn. Lancet. 1968 Jun 22;1(7556):1323–1329. doi: 10.1016/s0140-6736(68)92033-3. [DOI] [PubMed] [Google Scholar]
  22. Stahlman M. T., Battersby E. J., Shepard F. M., Blankenship W. J. Prognosis in hyaline-membrane disease. Use of a linear-discriminant. N Engl J Med. 1967 Feb 9;276(6):303–309. doi: 10.1056/NEJM196702092760601. [DOI] [PubMed] [Google Scholar]
  23. Suter P. M., Fairley H. B., Schlobohm R. M. Shunt, lung volume and perfusion during short periods of ventilation with oxygen. Anesthesiology. 1975 Dec;43(6):617–627. doi: 10.1097/00000542-197512000-00003. [DOI] [PubMed] [Google Scholar]
  24. Thibeault D. W., Clutario B., Auld P. A. Arterial oxygen tension in premature infants. J Pediatr. 1966 Sep;69(3):449–451. doi: 10.1016/s0022-3476(66)80090-2. [DOI] [PubMed] [Google Scholar]
  25. Thibeault D. W., Poblete E., Auld P. A. Alevolar-arterial O2 and CO2 differences and their relation to lung volume in the newborn. Pediatrics. 1968 Mar;41(3):574–587. [PubMed] [Google Scholar]
  26. Thibeault D. W., Poblete E., Auld P. A. Alveolar-arterial oxygen difference in premature infants breathing 100 per cent oxygen. J Pediatr. 1967 Dec;71(6):814–824. doi: 10.1016/s0022-3476(67)80006-4. [DOI] [PubMed] [Google Scholar]
  27. Tori C. A., Krauss A. N., Auld P. A. Serial studies of lung volume and VA-Q in hyaline membrane disease. Pediatr Res. 1973 Feb;7(2):82–88. doi: 10.1203/00006450-197302000-00003. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES