Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1995 Aug;101(2):362–368. doi: 10.1111/j.1365-2249.1995.tb08365.x

Human recombinant IL-4 decreases the emergence of non-specific cytolytic cells and favours the appearance of memory cells (CD4+CD45RO+) in the IL-2-driven development of cytotoxic T lymphocytes against autologous ovarian tumour cells.

A D Roth 1, S Dupuis 1, P Alberto 1
PMCID: PMC1553279  PMID: 7648722

Abstract

As IL-4 and IL-6 have also been reported to promote the development of T lymphocytes such as IL-2, we investigated their role in the development of specific cytotoxic T lymphocytes (CTL) against autologous ovarian tumours in mixed lymphocyte tumour cultures (MLTC). Peripheral blood lymphocytes (PBL) from five ovarian carcinoma (OC) patients were incubated with autologous OC cells at a PBL:OC cell ratio of 20:1 in IL-2 alone (50 U/ml for the first week and 200 U/ml thereafter) or with IL-4 (100 U/ml) and/or IL-6 (5 U/ml). Neither IL-4 nor IL-6 improved lymphocyte proliferation consistently. In contrast, IL-4 reduced significantly the development of LAK activity as assayed against Daudi cell line, and decreased modestly the emergence of natural killer (NK) activity as assayed against K562. This property was not shared by IL-6. The prevention of the development of non-specific cytolytic activity (LAK and NK activities) was much stronger when the MLTC was started with IL-4 in the absence of IL-2 during the first week in culture. A concomitant drop in NKH-1 expression (CD56) was observed. By inhibiting the emergence of non-specific cytotoxicity, IL-4 provided better evidence of the specific cytolytic activity directed at ovarian cells. In parallel, a significant increase in the generation of memory cells (CD4+CD45RO+) was observed with IL-4. In conclusion, in this model, IL-4 added before IL-2 decreases significantly the emergence of non-specific cytotoxic cells, and promotes the generation of memory cells. These properties may be of interest in the design of strategies aimed at obtaining tumour-specific cells for investigational and immunotherapeutic purposes.

Full text

PDF
362

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barth R. J., Jr, Bock S. N., Mulé J. J., Rosenberg S. A. Unique murine tumor-associated antigens identified by tumor infiltrating lymphocytes. J Immunol. 1990 Feb 15;144(4):1531–1537. [PubMed] [Google Scholar]
  2. Bello-Fernandez C., Bird C., Heslop H. E., Gottlieb D. J., Reittie J. E., Rill D. M., Holland M., Prentice H. G., Brenner M. K. Homeostatic action of interleukin-4 on endogenous and recombinant interleukin-2-induced activated killer cell function. Blood. 1991 Mar 15;77(6):1283–1289. [PubMed] [Google Scholar]
  3. Bello-Fernandez C., Oblakowski P., Meager A., Duncombe A. S., Rill D. M., Hoffbrand A. V., Brenner M. K. IL-4 acts as a homeostatic regulator of IL-2-induced TNF and IFN-gamma. Immunology. 1991 Feb;72(2):161–166. [PMC free article] [PubMed] [Google Scholar]
  4. Bertagnolli M. M., Takai Y., Herrmann S. H. IL-4-supported induction of cytolytic T lymphocytes requires IL-2 and IL-6. Cell Immunol. 1991 Apr 1;133(2):327–341. doi: 10.1016/0008-8749(91)90108-n. [DOI] [PubMed] [Google Scholar]
  5. Blay J. Y., Branellec D., Robinet E., Dugas B., Gay F., Chouaïb S. Involvement of cyclic adenosine monophosphate in the interleukin 4 inhibitory effect on interleukin 2-induced lymphokine-activated killer generation. J Clin Invest. 1990 Jun;85(6):1909–1913. doi: 10.1172/JCI114653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boon T. Tumor antigens recognized by cytolytic T lymphocytes: present perspectives for specific immunotherapy. Int J Cancer. 1993 May 8;54(2):177–180. doi: 10.1002/ijc.2910540202. [DOI] [PubMed] [Google Scholar]
  7. Brach M. A., deVos S., Gruss H. J., Herrmann F. Prolongation of survival of human polymorphonuclear neutrophils by granulocyte-macrophage colony-stimulating factor is caused by inhibition of programmed cell death. Blood. 1992 Dec 1;80(11):2920–2924. [PubMed] [Google Scholar]
  8. Colquhoun S. D., Economou J. S., Shau H., Golub S. H. IL-4 inhibits IL-2 induction of LAK cytotoxicity in lymphocytes from a variety of lymphoid tissues. J Surg Res. 1993 Nov;55(5):486–492. doi: 10.1006/jsre.1993.1173. [DOI] [PubMed] [Google Scholar]
  9. Erard F., Corthesy P., Nabholz M., Lowenthal J. W., Zaech P., Plaetinck G., MacDonald H. R. Interleukin 2 is both necessary and sufficient for the growth and differentiation of lectin-stimulated cytolytic T lymphocyte precursors. J Immunol. 1985 Mar;134(3):1644–1652. [PubMed] [Google Scholar]
  10. Fossati G., Anichini A., Squarcina P., Mazzocchi A., Parmiani G. Proliferative and/or cytotoxic activity of lymphocyte clones to autologous human melanoma. Int J Cancer. 1988 Aug 15;42(2):239–245. doi: 10.1002/ijc.2910420216. [DOI] [PubMed] [Google Scholar]
  11. Galandrini R., Cernetti C., Albi N., Dembech C., Terenzi A., Grignani F., Velardi A. Interleukin-6 is constitutively produced by human CTL clones and is required to maintain their cytolytic function. Cell Immunol. 1991 Nov;138(1):11–23. doi: 10.1016/0008-8749(91)90128-x. [DOI] [PubMed] [Google Scholar]
  12. Gerosa F., Tommasi M., Gerosa M., Tridente G. Human recombinant interleukin-4 inhibits lymphokine-activated killer activity of sheep erythrocyte rosette-forming (E+) and -non-forming (E-) human lymphocytes. Int J Cancer. 1988 Dec 15;42(6):902–905. doi: 10.1002/ijc.2910420619. [DOI] [PubMed] [Google Scholar]
  13. Gillis S., Baker P. E., Ruscetti F. W., Smith K. A. Long-term culture of human antigen-specific cytotoxic T-cell lines. J Exp Med. 1978 Oct 1;148(4):1093–1098. doi: 10.1084/jem.148.4.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hérin M., Lemoine C., Weynants P., Vessière F., Van Pel A., Knuth A., Devos R., Boon T. Production of stable cytolytic T-cell clones directed against autologous human melanoma. Int J Cancer. 1987 Mar 15;39(3):390–396. doi: 10.1002/ijc.2910390320. [DOI] [PubMed] [Google Scholar]
  15. Iho S., Golub S. H., Shau H. Interleukin-6 is a mediator of TNF-alpha regulation of LAK cell function. Scand J Immunol. 1993 Aug;38(2):137–141. doi: 10.1111/j.1365-3083.1993.tb01704.x. [DOI] [PubMed] [Google Scholar]
  16. Illera V. A., Perandones C. E., Stunz L. L., Mower D. A., Jr, Ashman R. F. Apoptosis in splenic B lymphocytes. Regulation by protein kinase C and IL-4. J Immunol. 1993 Sep 15;151(6):2965–2973. [PubMed] [Google Scholar]
  17. Jadus M. R., Good R. W., Crumpacker D. B., Yannelli J. R. Effects of interleukin 4 upon human tumoricidal cells obtained from patients bearing solid tumors. J Leukoc Biol. 1991 Feb;49(2):139–151. doi: 10.1002/jlb.49.2.139. [DOI] [PubMed] [Google Scholar]
  18. Knuth A., Wölfel T., Klehmann E., Boon T., Meyer zum Büschenfelde K. H. Cytolytic T-cell clones against an autologous human melanoma: specificity study and definition of three antigens by immunoselection. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2804–2808. doi: 10.1073/pnas.86.8.2804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lahat N., Shtiller R., Zlotnick A. Y., Merin G. Early IL-2/sIL-2R surge following surgery leads to temporary immune refractoriness. Clin Exp Immunol. 1993 Jun;92(3):482–486. doi: 10.1111/j.1365-2249.1993.tb03425.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mackay C. R. T-cell memory: the connection between function, phenotype and migration pathways. Immunol Today. 1991 Jun;12(6):189–192. doi: 10.1016/0167-5699(91)90051-T. [DOI] [PubMed] [Google Scholar]
  21. Mangan D. F., Robertson B., Wahl S. M. IL-4 enhances programmed cell death (apoptosis) in stimulated human monocytes. J Immunol. 1992 Mar 15;148(6):1812–1816. [PubMed] [Google Scholar]
  22. Mantovani A., Allavena P., Sessa C., Bolis G., Mangioni C. Natural killer activity of lymphoid cells isolated from human ascitic ovarian tumors. Int J Cancer. 1980 May 15;25(5):573–582. doi: 10.1002/ijc.2910250505. [DOI] [PubMed] [Google Scholar]
  23. Melder R. J., Whiteside T. L., Vujanovic N. L., Hiserodt J. C., Herberman R. B. A new approach to generating antitumor effectors for adoptive immunotherapy using human adherent lymphokine-activated killer cells. Cancer Res. 1988 Jun 15;48(12):3461–3469. [PubMed] [Google Scholar]
  24. Miescher S., Whiteside T. L., Carrel S., von Fliedner V. Functional properties of tumor-infiltrating and blood lymphocytes in patients with solid tumors: effects of tumor cells and their supernatants on proliferative responses of lymphocytes. J Immunol. 1986 Mar 1;136(5):1899–1907. [PubMed] [Google Scholar]
  25. Migliorati G., Nicoletti I., Pagliacci M. C., D'Adamio L., Riccardi C. Interleukin-2 induces apoptosis in mouse thymocytes. Cell Immunol. 1993 Jan;146(1):52–61. doi: 10.1006/cimm.1993.1005. [DOI] [PubMed] [Google Scholar]
  26. Mulé J. J., Smith C. A., Rosenberg S. A. Interleukin 4 (B cell stimulatory factor 1) can mediate the induction of lymphokine-activated killer cell activity directed against fresh tumor cells. J Exp Med. 1987 Sep 1;166(3):792–797. doi: 10.1084/jem.166.3.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nagler A., Lanier L. L., Phillips J. H. The effects of IL-4 on human natural killer cells. A potent regulator of IL-2 activation and proliferation. J Immunol. 1988 Oct 1;141(7):2349–2351. [PubMed] [Google Scholar]
  28. Robinet E., Kamoun M., Farace F., Chouaib S. Interleukin-4 differentially regulates interleukin-2-mediated and CD2-mediated induction of human lymphokine-activated killer effectors. Eur J Immunol. 1992 Nov;22(11):2861–2865. doi: 10.1002/eji.1830221116. [DOI] [PubMed] [Google Scholar]
  29. Rogers L. A., Zlotnik A., Lee F., Shortman K. Lymphokine requirements for the development of specific cytotoxic T cells from single precursors. Eur J Immunol. 1991 Apr;21(4):1069–1072. doi: 10.1002/eji.1830210432. [DOI] [PubMed] [Google Scholar]
  30. Roth A. D., Hornicek F. J., Gerstner C. G., Kirkwood J. M. Effects of interferon-gamma and tumour necrosis factor-alpha on the development of cytotoxic T lymphocytes in autologous mixed lymphocyte tumour cultures with human melanoma. Clin Exp Immunol. 1991 Oct;86(1):163–172. doi: 10.1111/j.1365-2249.1991.tb05790.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smith K. A. Interleukin-2. Curr Opin Immunol. 1992 Jun;4(3):271–276. doi: 10.1016/0952-7915(92)90076-q. [DOI] [PubMed] [Google Scholar]
  32. Taylor M. K., Cohen J. J. Cell-mediated cytotoxicity. Curr Opin Immunol. 1992 Jun;4(3):338–343. doi: 10.1016/0952-7915(92)90086-t. [DOI] [PubMed] [Google Scholar]
  33. Tunru I. S., Suzuki H., Yano S. Effect of macrophages on interleukin-2 (IL-2)- and IL-4-induced murine lymphokine-activated killer activity. Int J Cancer. 1991 Jun 19;48(4):568–573. doi: 10.1002/ijc.2910480415. [DOI] [PubMed] [Google Scholar]
  34. Uberti J., Martilotti F., Chou T. H., Kaplan J. Human lymphokine activated killer (LAK) cells suppress generation of allospecific cytotoxic T cells: implications for use of LAK cells to prevent graft-versus-host disease in allogeneic bone marrow transplantation. Blood. 1992 Jan 1;79(1):261–268. [PubMed] [Google Scholar]
  35. Yron I., Shohat L. Miniaturization of the standard 51Cr release assay for long term follow-up of NK activity of individual mice. J Immunol Methods. 1986 Nov 6;93(2):193–200. doi: 10.1016/0022-1759(86)90188-2. [DOI] [PubMed] [Google Scholar]
  36. Zubiaga A. M., Munoz E., Huber B. T. IL-4 and IL-2 selectively rescue Th cell subsets from glucocorticoid-induced apoptosis. J Immunol. 1992 Jul 1;149(1):107–112. [PubMed] [Google Scholar]
  37. van der Bruggen P., Traversari C., Chomez P., Lurquin C., De Plaen E., Van den Eynde B., Knuth A., Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991 Dec 13;254(5038):1643–1647. doi: 10.1126/science.1840703. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES