Abstract
CTL are by far the most important defence mechanisms against viral infections, and many attempts have been undertaken to induce protective CTL in vivo. In order to identify CTL epitopes for their possible use as peptide-vaccine candidates, HIV proteins were screened for peptide sequences which (i) fulfil the binding motif of the HLA-A2.1 molecule, and (ii) are involved in the natural immune response to HIV. From 73 nonameric peptides satisfying the binding motif, 20 peptides were synthesized and their binding to HLA-A2.1 was monitored by measuring the expression of HLA-A2.1 molecules on the cell surface of the mutant cell line T2. To evaluate the involvement in natural HIV infection, strongly binding peptides were used in cytotoxicity assays to assess their capacity to generate a peptide-specific CTL response in vitro. From 20 nonameric peptides synthesized, only five showed strong binding to HLA-A2.1. All five binding peptides had the secondary anchor residues, recently proposed by Ruppert et al. [1] to be required for binding to HLA-A2.1. The discrimination between bound and unbound peptides confirmed the importance of these secondary anchor residues which, beside the known binding motif, may dictate if a peptide can bind to HLA-A2.1 or not. In HIV- donors, no CTL activity against any of the HIV-derived peptides was detectable after a 12-day in vitro stimulation. In contrast, HIV-infected persons showed a cytotoxic response against peptide-labelled target cells, suggesting that they had developed upon HIV infection a cytotoxic immune response against the identified CTL epitopes.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aichele P., Hengartner H., Zinkernagel R. M., Schulz M. Antiviral cytotoxic T cell response induced by in vivo priming with a free synthetic peptide. J Exp Med. 1990 May 1;171(5):1815–1820. doi: 10.1084/jem.171.5.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnon R., Horwitz R. J. Synthetic peptides as vaccines. Curr Opin Immunol. 1992 Aug;4(4):449–453. doi: 10.1016/s0952-7915(06)80037-3. [DOI] [PubMed] [Google Scholar]
- Bednarek M. A., Engl S. A., Gammon M. C., Lindquist J. A., Porter G., Williamson A. R., Zweerink H. J. Soluble HLA-A2.1 restricted peptides that are recognized by influenza virus specific cytotoxic T lymphocytes. J Immunol Methods. 1991 May 17;139(1):41–47. doi: 10.1016/0022-1759(91)90349-k. [DOI] [PubMed] [Google Scholar]
- Berzofsky J. A. Progress toward an artificial vaccine for HIV: identification of helper and cytotoxic T-cell epitopes and methods of immunization. Biotechnol Ther. 1991;2(1-2):123–135. [PubMed] [Google Scholar]
- Bollinger R. C., Quinn T. C., Liu A. Y., Stanhope P. E., Hammond S. A., Viveen R., Clements M. L., Siliciano R. F. Cytokines from vaccine-induced HIV-1 specific cytotoxic T lymphocytes: effects on viral replication. AIDS Res Hum Retroviruses. 1993 Nov;9(11):1067–1077. doi: 10.1089/aid.1993.9.1067. [DOI] [PubMed] [Google Scholar]
- Buseyne F., Janvier G., Fleury B., Schmidt D., Rivière Y. Multispecific and heterogeneous recognition of the gag protein by cytotoxic T lymphocytes (CTL) from HIV-infected patients: factors other than the MHC control the epitopic specificities. Clin Exp Immunol. 1994 Sep;97(3):353–360. doi: 10.1111/j.1365-2249.1994.tb06094.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cerundolo V., Elliott T., Elvin J., Bastin J., Rammensee H. G., Townsend A. The binding affinity and dissociation rates of peptides for class I major histocompatibility complex molecules. Eur J Immunol. 1991 Sep;21(9):2069–2075. doi: 10.1002/eji.1830210915. [DOI] [PubMed] [Google Scholar]
- Chen W., Carbone F. R., McCluskey J. Electroporation and commercial liposomes efficiently deliver soluble protein into the MHC class I presentation pathway. Priming in vitro and in vivo for class I-restricted recognition of soluble antigen. J Immunol Methods. 1993 Mar 15;160(1):49–57. doi: 10.1016/0022-1759(93)90007-t. [DOI] [PubMed] [Google Scholar]
- Clerici M., Lucey D. R., Zajac R. A., Boswell R. N., Gebel H. M., Takahashi H., Berzofsky J. A., Shearer G. M. Detection of cytotoxic T lymphocytes specific for synthetic peptides of gp160 in HIV-seropositive individuals. J Immunol. 1991 Apr 1;146(7):2214–2219. [PubMed] [Google Scholar]
- Cox A. L., Skipper J., Chen Y., Henderson R. A., Darrow T. L., Shabanowitz J., Engelhard V. H., Hunt D. F., Slingluff C. L., Jr Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science. 1994 Apr 29;264(5159):716–719. doi: 10.1126/science.7513441. [DOI] [PubMed] [Google Scholar]
- Dadaglio G., Leroux A., Langlade-Demoyen P., Bahraoui E. M., Traincard F., Fisher R., Plata F. Epitope recognition of conserved HIV envelope sequences by human cytotoxic T lymphocytes. J Immunol. 1991 Oct 1;147(7):2302–2309. [PubMed] [Google Scholar]
- Deres K., Schild H., Wiesmüller K. H., Jung G., Rammensee H. G. In vivo priming of virus-specific cytotoxic T lymphocytes with synthetic lipopeptide vaccine. Nature. 1989 Nov 30;342(6249):561–564. doi: 10.1038/342561a0. [DOI] [PubMed] [Google Scholar]
- Eberl G., Sabbatini A., Servis C., Romero P., Maryanski J. L., Corradin G. MHC class I H-2Kd-restricted antigenic peptides: additional constraints for the binding motif. Int Immunol. 1993 Nov;5(11):1489–1492. doi: 10.1093/intimm/5.11.1489. [DOI] [PubMed] [Google Scholar]
- Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
- Fauci A. S. Multifactorial nature of human immunodeficiency virus disease: implications for therapy. Science. 1993 Nov 12;262(5136):1011–1018. doi: 10.1126/science.8235617. [DOI] [PubMed] [Google Scholar]
- Harty J. T., Bevan M. J. CD8+ T cells specific for a single nonamer epitope of Listeria monocytogenes are protective in vivo. J Exp Med. 1992 Jun 1;175(6):1531–1538. doi: 10.1084/jem.175.6.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hobohm U., Meyerhans A. A pattern search method for putative anchor residues in T cell epitopes. Eur J Immunol. 1993 Jun;23(6):1271–1276. doi: 10.1002/eji.1830230612. [DOI] [PubMed] [Google Scholar]
- Hogan K. T., Brown S. L. Localization and characterization of serologic epitopes on HLA-A2. Hum Immunol. 1992 Mar;33(3):185–192. doi: 10.1016/0198-8859(92)90070-4. [DOI] [PubMed] [Google Scholar]
- Kast W. M., Roux L., Curren J., Blom H. J., Voordouw A. C., Meloen R. H., Kolakofsky D., Melief C. J. Protection against lethal Sendai virus infection by in vivo priming of virus-specific cytotoxic T lymphocytes with a free synthetic peptide. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2283–2287. doi: 10.1073/pnas.88.6.2283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawakami Y., Eliyahu S., Sakaguchi K., Robbins P. F., Rivoltini L., Yannelli J. R., Appella E., Rosenberg S. A. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med. 1994 Jul 1;180(1):347–352. doi: 10.1084/jem.180.1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamhamedi-Cherradi S., Culmann-Penciolelli B., Guy B., Kiény M. P., Dreyfus F., Saimot A. G., Sereni D., Sicard D., Lévy J. P., Gomard E. Qualitative and quantitative analysis of human cytotoxic T-lymphocyte responses to HIV-1 proteins. AIDS. 1992 Nov;6(11):1249–1258. doi: 10.1097/00002030-199211000-00002. [DOI] [PubMed] [Google Scholar]
- Letvin N. L. Vaccines against human immunodeficiency virus--progress and prospects. N Engl J Med. 1993 Nov 4;329(19):1400–1405. doi: 10.1056/NEJM199311043291908. [DOI] [PubMed] [Google Scholar]
- McMichael A. J., Gotch F. M., Noble G. R., Beare P. A. Cytotoxic T-cell immunity to influenza. N Engl J Med. 1983 Jul 7;309(1):13–17. doi: 10.1056/NEJM198307073090103. [DOI] [PubMed] [Google Scholar]
- McMichael A. J., Michie C. A., Gotch F. M., Smith G. L., Moss B. Recognition of influenza A virus nucleoprotein by human cytotoxic T lymphocytes. J Gen Virol. 1986 Apr;67(Pt 4):719–726. doi: 10.1099/0022-1317-67-4-719. [DOI] [PubMed] [Google Scholar]
- Mosier D. E., Gulizia R. J., MacIsaac P. D., Corey L., Greenberg P. D. Resistance to human immunodeficiency virus 1 infection of SCID mice reconstituted with peripheral blood leukocytes from donors vaccinated with vaccinia gp160 and recombinant gp160. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2443–2447. doi: 10.1073/pnas.90.6.2443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray N., McMichael A. Antigen presentation in virus infection. Curr Opin Immunol. 1992 Aug;4(4):401–407. doi: 10.1016/s0952-7915(06)80030-0. [DOI] [PubMed] [Google Scholar]
- Nixon D. F., Broliden K., Ogg G., Broliden P. A. Cellular and humoral antigenic epitopes in HIV and SIV. Immunology. 1992 Aug;76(4):515–534. [PMC free article] [PubMed] [Google Scholar]
- Nixon D. F., McMichael A. J. Cytotoxic T-cell recognition of HIV proteins and peptides. AIDS. 1991 Sep;5(9):1049–1059. [PubMed] [Google Scholar]
- Parker K. C., Bednarek M. A., Coligan J. E. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol. 1994 Jan 1;152(1):163–175. [PubMed] [Google Scholar]
- Quinnan G. V., Jr, Kirmani N., Rook A. H., Manischewitz J. F., Jackson L., Moreschi G., Santos G. W., Saral R., Burns W. H. Cytotoxic t cells in cytomegalovirus infection: HLA-restricted T-lymphocyte and non-T-lymphocyte cytotoxic responses correlate with recovery from cytomegalovirus infection in bone-marrow-transplant recipients. N Engl J Med. 1982 Jul 1;307(1):7–13. doi: 10.1056/NEJM198207013070102. [DOI] [PubMed] [Google Scholar]
- Rammensee H. G., Falk K., Rötzschke O. MHC molecules as peptide receptors. Curr Opin Immunol. 1993 Feb;5(1):35–44. doi: 10.1016/0952-7915(93)90078-7. [DOI] [PubMed] [Google Scholar]
- Ratner L., Haseltine W., Patarca R., Livak K. J., Starcich B., Josephs S. F., Doran E. R., Rafalski J. A., Whitehorn E. A., Baumeister K. Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature. 1985 Jan 24;313(6000):277–284. doi: 10.1038/313277a0. [DOI] [PubMed] [Google Scholar]
- Rickinson A. B., Wallace L. E., Epstein M. A. HLA-restricted T-cell recognition of Epstein-Barr virus-infected B cells. Nature. 1980 Feb 28;283(5750):865–867. doi: 10.1038/283865a0. [DOI] [PubMed] [Google Scholar]
- Robertson M. N., Spangrude G. J., Hasenkrug K., Perry L., Nishio J., Wehrly K., Chesebro B. Role and specificity of T-cell subsets in spontaneous recovery from Friend virus-induced leukemia in mice. J Virol. 1992 Jun;66(6):3271–3277. doi: 10.1128/jvi.66.6.3271-3277.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romero P., Maryanski J. L., Corradin G., Nussenzweig R. S., Nussenzweig V., Zavala F. Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria. Nature. 1989 Sep 28;341(6240):323–326. doi: 10.1038/341323a0. [DOI] [PubMed] [Google Scholar]
- Ruppert J., Sidney J., Celis E., Kubo R. T., Grey H. M., Sette A. Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell. 1993 Sep 10;74(5):929–937. doi: 10.1016/0092-8674(93)90472-3. [DOI] [PubMed] [Google Scholar]
- Sabin A. B. HIV vaccination dilemma. Nature. 1993 Mar 18;362(6417):212–212. doi: 10.1038/362212a0. [DOI] [PubMed] [Google Scholar]
- Schulz M., Zinkernagel R. M., Hengartner H. Peptide-induced antiviral protection by cytotoxic T cells. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):991–993. doi: 10.1073/pnas.88.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sedegah M., Sim B. K., Mason C., Nutman T., Malik A., Roberts C., Johnson A., Ochola J., Koech D., Were B. Naturally acquired CD8+ cytotoxic T lymphocytes against the Plasmodium falciparum circumsporozoite protein. J Immunol. 1992 Aug 1;149(3):966–971. [PubMed] [Google Scholar]
- Shafferman A., Jahrling P. B., Benveniste R. E., Lewis M. G., Phipps T. J., Eden-McCutchan F., Sadoff J., Eddy G. A., Burke D. S. Protection of macaques with a simian immunodeficiency virus envelope peptide vaccine based on conserved human immunodeficiency virus type 1 sequences. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7126–7130. doi: 10.1073/pnas.88.16.7126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stuber G., Modrow S., Höglund P., Franksson L., Elvin J., Wolf H., Kärre K., Klein G. Assessment of major histocompatibility complex class I interaction with Epstein-Barr virus and human immunodeficiency virus peptides by elevation of membrane H-2 and HLA in peptide loading-deficient cells. Eur J Immunol. 1992 Oct;22(10):2697–2703. doi: 10.1002/eji.1830221033. [DOI] [PubMed] [Google Scholar]
- Townsend A., Ohlén C., Bastin J., Ljunggren H. G., Foster L., Kärre K. Association of class I major histocompatibility heavy and light chains induced by viral peptides. Nature. 1989 Aug 10;340(6233):443–448. doi: 10.1038/340443a0. [DOI] [PubMed] [Google Scholar]
- Traynor D., Kessin R. H., Williams J. G. Chemotactic sorting to cAMP in the multicellular stages of Dictyostelium development. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8303–8307. doi: 10.1073/pnas.89.17.8303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ulmer J. B., Donnelly J. J., Parker S. E., Rhodes G. H., Felgner P. L., Dwarki V. J., Gromkowski S. H., Deck R. R., DeWitt C. M., Friedman A. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 1993 Mar 19;259(5102):1745–1749. doi: 10.1126/science.8456302. [DOI] [PubMed] [Google Scholar]
- Widmann C., Romero P., Maryanski J. L., Corradin G., Valmori D. T helper epitopes enhance the cytotoxic response of mice immunized with MHC class I-restricted malaria peptides. J Immunol Methods. 1992 Oct 19;155(1):95–99. doi: 10.1016/0022-1759(92)90275-x. [DOI] [PubMed] [Google Scholar]
- Zhou F., Huang L. Monophosphoryl lipid A enhances specific CTL induction by a soluble protein antigen entrapped in liposomes. Vaccine. 1993;11(11):1139–1144. doi: 10.1016/0264-410x(93)90076-a. [DOI] [PubMed] [Google Scholar]