Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1995 Oct;102(1):186–191. doi: 10.1111/j.1365-2249.1995.tb06654.x

Beneficial effect of amrinone on murine cardiac allograft survival.

T Hirozane 1, A Matsumori 1, Y Furukawa 1, S Matsui 1, Y Sato 1, Y Matoba 1, S Sasayama 1
PMCID: PMC1553326  PMID: 7554388

Abstract

Amrinone is a non-glycoside positive inotropic agent with an inhibitory effect on a cyclic adenosine monophosphate (AMP) phosphodiesterase isoenzyme. In the present study, we examined the immunosuppressive action of amrinone, since several other cyclic AMP-elevating agents have been shown to suppress T lymphocyte activation. First, the in vivo effects of amrinone were investigated. Oral amrinone treatment, at 40 mg/kg per day, significantly prolonged median cardiac allograft survival compared with non-treated controls (22.0 days versus 10.5 days, P < 0.01) when DBA/2 mouse hearts (H-2d) were heterotopically transplanted into C57B1/6 mice (H-2b). Histopathological examination showed that there was less prominent cellular infiltration in the amrinone-treated than in the non-treated allografts. Plasma amrinone concentrations of mice after a single oral dose of 40 mg/kg were within the range of clinical relevance. To clarify the mechanism of action, in vitro studies were done. The generation of specific cytotoxic T lymphocytes after mixed lymphocyte culture was significantly suppressed by addition of amrinone to the culture medium at 5 micrograms/ml. The production of IL-2 and the interferon-gamma during mixed lymphocyte culture was also suppressed by amrinone at 5 micrograms/ml. However, the level of intracellular cyclic AMP in mouse splenic lymphocytes was not affected significantly by the same dose of amrinone. In conclusion, amrinone has immunosuppressive actions at the therapeutic doses, and it may be a beneficial agent for therapy against acute cardiac allograft rejection.

Full text

PDF
186

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alousi A. A., Farah A. E., Lesher G. Y., Opalka C. J., Jr Cardiotonic activity of amrinone--Win 40680 [5-amino-3,4'-bipyridine-6(1H)-one]. Circ Res. 1979 Nov;45(5):666–677. doi: 10.1161/01.res.45.5.666. [DOI] [PubMed] [Google Scholar]
  2. Arbustini E., Grasso M., Diegoli M., Bramerio M., Foglieni A. S., Albertario M., Martinelli L., Gavazzi A., Goggi C., Campana C. Expression of tumor necrosis factor in human acute cardiac rejection. An immunohistochemical and immunoblotting study. Am J Pathol. 1991 Oct;139(4):709–715. [PMC free article] [PubMed] [Google Scholar]
  3. Benotti J. R., Grossman W., Braunwald E., Davolos D. D., Alousi A. A. Hemodynamic assessment of amrinone. A new inotropic agent. N Engl J Med. 1978 Dec 21;299(25):1373–1377. doi: 10.1056/NEJM197812212992501. [DOI] [PubMed] [Google Scholar]
  4. Blank I., Baudisch W., Burmeister J., Franz U. Die Wirkung von Amrinon und Trapidil auf Adhärenz, Migration und Phagozytoseverhalten neutrophiler Granulozyten des Menschen. Folia Haematol Int Mag Klin Morphol Blutforsch. 1987;114(6):760–767. [PubMed] [Google Scholar]
  5. Cairns H. S., Fairbanks L. D., Westwick J., Neild G. H. Cyclosporin therapy in vivo attenuates the response to vasodilators in the isolated perfused kidney of the rabbit. Br J Pharmacol. 1989 Oct;98(2):463–468. doi: 10.1111/j.1476-5381.1989.tb12619.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chodera A., Feller K. Some aspects of pharmacokinetic and biotransformation differences in humans and mammal animals. Int J Clin Pharmacol Biopharm. 1978 Aug;16(8):357–360. [PubMed] [Google Scholar]
  7. Coffino P., Gray J. W., Tomkins G. M. Cyclic AMP, a nonessential regulator of the cell cycle. Proc Natl Acad Sci U S A. 1975 Mar;72(3):878–882. doi: 10.1073/pnas.72.3.878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dallman M. J., Larsen C. P., Morris P. J. Cytokine gene transcription in vascularised organ grafts: analysis using semiquantitative polymerase chain reaction. J Exp Med. 1991 Aug 1;174(2):493–496. doi: 10.1084/jem.174.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Endoh M., Yamashita S., Taira N. Positive inotropic effect of amrinone in relation to cyclic nucleotide metabolism in the canine ventricular muscle. J Pharmacol Exp Ther. 1982 Jun;221(3):775–783. [PubMed] [Google Scholar]
  10. Farah A. E., Alousi A. A. New cardiotonic agents: a search for digitalis substitute. Life Sci. 1978 Apr 3;22(13-15):1139–1147. doi: 10.1016/0024-3205(78)90083-8. [DOI] [PubMed] [Google Scholar]
  11. Freeman A. P., Giles R. W., Walsh W. F., Fisher R., Murray I. P., Wilcken D. E. Regional left ventricular wall motion assessment: comparison of two-dimensional echocardiography and radionuclide angiography with contrast angiography in healed myocardial infarction. Am J Cardiol. 1985 Jul 1;56(1):8–12. doi: 10.1016/0002-9149(85)90556-9. [DOI] [PubMed] [Google Scholar]
  12. Giroir B. P., Beutler B. Effect of amrinone on tumor necrosis factor production in endotoxic shock. Circ Shock. 1992 Mar;36(3):200–207. [PubMed] [Google Scholar]
  13. Klein N. A., Siskind S. J., Frishman W. H., Sonnenblick E. H., LeJemtel T. H. Hemodynamic comparison of intravenous amrinone and dobutamine in patients with chronic congestive heart failure. Am J Cardiol. 1981 Jul;48(1):170–175. doi: 10.1016/0002-9149(81)90587-7. [DOI] [PubMed] [Google Scholar]
  14. Kullberg M. P., Dorrbecker B., Lennon J., Rowe E., Edelson J. High-performance liquid chromatographic analysis of amrinone and its N-acetyl derivative in plasma. Pharmacokinetics of amrinone in the dog. J Chromatogr. 1980 Jan 4;187(1):264–270. doi: 10.1016/s0021-9673(00)87899-1. [DOI] [PubMed] [Google Scholar]
  15. Levy J. H., Bailey J. M. Amrinone: its effect on vascular resistance and capacitance in human subjects. Chest. 1994 Jan;105(1):62–64. doi: 10.1378/chest.105.1.62. [DOI] [PubMed] [Google Scholar]
  16. Lingk D. S., Chan M. A., Gelfand E. W. Increased cyclic adenosine monophosphate levels block progression but not initiation of human T cell proliferation. J Immunol. 1990 Jul 15;145(2):449–455. [PubMed] [Google Scholar]
  17. Massie B., Bourassa M., DiBianco R., Hess M., Konstam M., Likoff M., Packer M. Long-term oral administration of amrinone for congestive heart failure: lack of efficacy in a multicenter controlled trial. Circulation. 1985 May;71(5):963–971. doi: 10.1161/01.cir.71.5.963. [DOI] [PubMed] [Google Scholar]
  18. Rego A., Vargas R., Cathapermal S., Kuwahara M., Foegh M. L., Ramwell P. W. Systemic vascular effects of cyclosporin A treatment in normotensive rats. J Pharmacol Exp Ther. 1991 Nov;259(2):905–915. [PubMed] [Google Scholar]
  19. Shaddy R. E., Paisley J. E., Hansen J. C. Effects of amrinone on thrombin-induced platelet-derived growth factor-like protein secretion from endothelial cells. Pediatr Res. 1991 Oct;30(4):351–354. doi: 10.1203/00006450-199110000-00011. [DOI] [PubMed] [Google Scholar]
  20. Soulillou J. P. Cytokines and transplantation. Transplant Proc. 1993 Feb;25(1 Pt 1):106–108. [PubMed] [Google Scholar]
  21. Tanaka K., Takano T., Seino Y. Effects of intravenous amrinone on heart failure complicated by acute myocardial infarction: comparative study with dopamine and dobutamine. Jpn Circ J. 1986 Jul;50(7):652–658. doi: 10.1253/jcj.50.652. [DOI] [PubMed] [Google Scholar]
  22. Valitutti S., Dessing M., Lanzavecchia A. Role of cAMP in regulating cytotoxic T lymphocyte adhesion and motility. Eur J Immunol. 1993 Apr;23(4):790–795. doi: 10.1002/eji.1830230403. [DOI] [PubMed] [Google Scholar]
  23. von der Leyen H. Phosphodiesterase inhibition by new cardiotonic agents: mechanism of action and possible clinical relevance in the therapy of congestive heart failure. Klin Wochenschr. 1989 Jun 15;67(12):605–615. doi: 10.1007/BF01718141. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES