Abstract
The aim of this study was to determine the developmental profile of mannose-binding protein (MBP) in preterm infants. MBP was measured in 885 longitudinally collected serum samples from 168 preterm infants, and 63 were genotyped with respect to the codon 54 mutation in the MBP gene. MBP level/codon 54 genotyping were also determined on the cord blood of 146/123 term infants and 138/123 adults, respectively. The best cut-off values of MBP for dividing preterm, term infants and adults into 'low' and 'high' MBP groups were 400 ng/ml (55 low, 113 high), 700 ng/ml (35 low, 111 high) and 750 ng/ml (33 low, 105 high), respectively, by achieving the least number of misclassifications according to the codon 54 mutation. The relative risk of the 'low' groups for presence of the codon 54 mutation compared with 'high' groups were 42.4, 67.9 and 22.9 for preterm, term infants and adults, respectively (P < 0.00001). The gestational age and birth weight of the 'low' (n = 55) and 'high' (n = 113) MBP groups of the 168 preterm infants were 29.5 +/- 2.8 weeks, 30.5 +/- 2.8 weeks (P = 0.03) and 1230 +/- 317 g, 1277 +/- 289 g (P = 0.35), respectively. The mean MBP levels of these two groups of preterm infants were different (P < 0.001) at all ages measured. As a whole group, the MBP level rose from a mean of 500 ng/ml at 25 weeks gestation to 1700 ng/ml at 20 weeks post full-term. The mortality rates of 'low' and 'high' MBP groups of preterm infants were 22% and 12%, respectively (P = 0.113). This difference in mortality was due to gestational age and birth weight standard deviation score (SDS) after adjusting for length of gestation and gender (P = 0.0001) rather than to low MBP levels (P = 0.65). MBP levels were not related to birthweight SDS score (P = 0.26). The mean +/- s.d. MBP levels for preterm, term infants and adults without the codon 54 mutation were 1225 +/- 701 ng/ml (n = 45), 2064 +/- 829 ng/ml (n = 88) and 2473 +/- 1395 ng/ml (n = 95), respectively; the corresponding values for those with the codon 54 mutation were 130 +/- 275 ng/ml (n = 18), 533 +/- 665 ng/ml (n = 35) and 330 +/- 225 ng/ml (n = 28), respectively. Intra-uterine growth retardation in preterm infants does not influence MBP levels. For those without the codon 54 mutation, there is a significant difference in MBP level between the three age groups. For those with the codon 54 mutation, there is a significant difference between preterm and term infants, but not between term infants and adults. We conclude that there is a maturation in MBP levels for preterm infants, and that a moderately low MBP phenotype does not affect survival. We cannot exclude an effect of profoundly reduced MBP levels (characteristic of individuals homozygous for the codon 54 mutation), since no such preterm infant was identified in this study.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ezekowitz R. A., Kuhlman M., Groopman J. E., Byrn R. A. A human serum mannose-binding protein inhibits in vitro infection by the human immunodeficiency virus. J Exp Med. 1989 Jan 1;169(1):185–196. doi: 10.1084/jem.169.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garred P., Madsen H. O., Kurtzhals J. A., Lamm L. U., Thiel S., Hey A. S., Svejgaard A. Diallelic polymorphism may explain variations of the blood concentration of mannan-binding protein in Eskimos, but not in black Africans. Eur J Immunogenet. 1992 Dec;19(6):403–412. doi: 10.1111/j.1744-313x.1992.tb00083.x. [DOI] [PubMed] [Google Scholar]
- Garred P., Thiel S., Madsen H. O., Ryder L. P., Jensenius J. C., Svejgaard A. Gene frequency and partial protein characterization of an allelic variant of mannan binding protein associated with low serum concentrations. Clin Exp Immunol. 1992 Dec;90(3):517–521. doi: 10.1111/j.1365-2249.1992.tb05876.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartshorn K. L., Sastry K., White M. R., Anders E. M., Super M., Ezekowitz R. A., Tauber A. I. Human mannose-binding protein functions as an opsonin for influenza A viruses. J Clin Invest. 1993 Apr;91(4):1414–1420. doi: 10.1172/JCI116345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuhlman M., Joiner K., Ezekowitz R. A. The human mannose-binding protein functions as an opsonin. J Exp Med. 1989 May 1;169(5):1733–1745. doi: 10.1084/jem.169.5.1733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lau Y. L., Tam A. Y., Ng K. W., Tsoi N. S., Lam B., Lam P., Yeung C. Y. Response of preterm infants to hepatitis B vaccine. J Pediatr. 1992 Dec;121(6):962–965. doi: 10.1016/s0022-3476(05)80352-x. [DOI] [PubMed] [Google Scholar]
- Lipscombe R. J., Lau Y. L., Levinsky R. J., Sumiya M., Summerfield J. A., Turner M. W. Identical point mutation leading to low levels of mannose binding protein and poor C3b mediated opsonisation in Chinese and Caucasian populations. Immunol Lett. 1992 May;32(3):253–257. doi: 10.1016/0165-2478(92)90058-v. [DOI] [PubMed] [Google Scholar]
- Lipscombe R. J., Sumiya M., Hill A. V., Lau Y. L., Levinsky R. J., Summerfield J. A., Turner M. W. High frequencies in African and non-African populations of independent mutations in the mannose binding protein gene. Hum Mol Genet. 1992 Dec;1(9):709–715. doi: 10.1093/hmg/1.9.709. [DOI] [PubMed] [Google Scholar]
- Lu J. H., Thiel S., Wiedemann H., Timpl R., Reid K. B. Binding of the pentamer/hexamer forms of mannan-binding protein to zymosan activates the proenzyme C1r2C1s2 complex, of the classical pathway of complement, without involvement of C1q. J Immunol. 1990 Mar 15;144(6):2287–2294. [PubMed] [Google Scholar]
- Madsen H. O., Garred P., Kurtzhals J. A., Lamm L. U., Ryder L. P., Thiel S., Svejgaard A. A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics. 1994;40(1):37–44. doi: 10.1007/BF00163962. [DOI] [PubMed] [Google Scholar]
- Malhotra R., Willis A. C., Lopez Bernal A., Thiel S., Sim R. B. Mannan-binding protein levels in human amniotic fluid during gestation and its interaction with collectin receptor from amnion cells. Immunology. 1994 Jul;82(3):439–444. [PMC free article] [PubMed] [Google Scholar]
- Matsushita M., Fujita T. Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease. J Exp Med. 1992 Dec 1;176(6):1497–1502. doi: 10.1084/jem.176.6.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richardson V. F., Larcher V. F., Price J. F. A common congenital immunodeficiency predisposing to infection and atopy in infancy. Arch Dis Child. 1983 Oct;58(10):799–802. doi: 10.1136/adc.58.10.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross S. C., Densen P. Complement deficiency states and infection: epidemiology, pathogenesis and consequences of neisserial and other infections in an immune deficiency. Medicine (Baltimore) 1984 Sep;63(5):243–273. [PubMed] [Google Scholar]
- Sastry K., Ezekowitz R. A. Collectins: pattern recognition molecules involved in first line host defense. Curr Opin Immunol. 1993 Feb;5(1):59–66. doi: 10.1016/0952-7915(93)90082-4. [DOI] [PubMed] [Google Scholar]
- Sastry K., Herman G. A., Day L., Deignan E., Bruns G., Morton C. C., Ezekowitz R. A. The human mannose-binding protein gene. Exon structure reveals its evolutionary relationship to a human pulmonary surfactant gene and localization to chromosome 10. J Exp Med. 1989 Oct 1;170(4):1175–1189. doi: 10.1084/jem.170.4.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuffenecker I., Narod S. A., Ezekowitz R. A., Sobol H., Feunteun J., Lenoir G. M. The gene for mannose-binding protein maps to chromosome 10 and is a marker for multiple endocrine neoplasia type 2. Cytogenet Cell Genet. 1991;56(2):99–102. doi: 10.1159/000133058. [DOI] [PubMed] [Google Scholar]
- Sumiya M., Super M., Tabona P., Levinsky R. J., Arai T., Turner M. W., Summerfield J. A. Molecular basis of opsonic defect in immunodeficient children. Lancet. 1991 Jun 29;337(8757):1569–1570. doi: 10.1016/0140-6736(91)93263-9. [DOI] [PubMed] [Google Scholar]
- Super M., Thiel S., Lu J., Levinsky R. J., Turner M. W. Association of low levels of mannan-binding protein with a common defect of opsonisation. Lancet. 1989 Nov 25;2(8674):1236–1239. doi: 10.1016/s0140-6736(89)91849-7. [DOI] [PubMed] [Google Scholar]
- Taylor M. E., Brickell P. M., Craig R. K., Summerfield J. A. Structure and evolutionary origin of the gene encoding a human serum mannose-binding protein. Biochem J. 1989 Sep 15;262(3):763–771. doi: 10.1042/bj2620763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terai I., Kobayashi K. Perinatal changes in serum mannose-binding protein (MBP) levels. Immunol Lett. 1993 Nov;38(3):185–187. doi: 10.1016/0165-2478(93)90004-l. [DOI] [PubMed] [Google Scholar]
- Thiel S., Bjerke T., Hansen D., Poulsen L. K., Schiøtz P. O., Jensenius J. C. Ontogeny of human mannan-binding protein, a lectin of the innate immune system. Pediatr Allergy Immunol. 1995 Feb;6(1):20–23. doi: 10.1111/j.1399-3038.1995.tb00252.x. [DOI] [PubMed] [Google Scholar]
- Thiel S., Holmskov U., Hviid L., Laursen S. B., Jensenius J. C. The concentration of the C-type lectin, mannan-binding protein, in human plasma increases during an acute phase response. Clin Exp Immunol. 1992 Oct;90(1):31–35. doi: 10.1111/j.1365-2249.1992.tb05827.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner M. W., Mowbray J. F., Harvey B. A., Brostoff J., Wells R. S., Soothill J. F. Defective yeast opsonization and C2 deficiency in atopic patients. Clin Exp Immunol. 1978 Nov;34(2):253–259. [PMC free article] [PubMed] [Google Scholar]
- Turner M. W., Super M., Singh S., Levinsky R. J. Molecular basis of a common opsonic defect. Clin Exp Allergy. 1991 Jan;21 (Suppl 1):182–188. doi: 10.1111/j.1365-2222.1991.tb01725.x. [DOI] [PubMed] [Google Scholar]
