Abstract
Control of IgG immune complex formation and deposition is important in determining the nature and extent of subsequent immune effector responses, and appears to be aberrant in some autoimmune diseases. In this study we demonstrate that recombinant soluble Fc gamma RII (rsFc gamma RII) is an effective modulator of immune complex formation, delaying immune precipitation in a manner which is dose-dependent, and can be specifically inhibited by anti-Fc gamma RII MoAb Fab' fragments. This inhibitory role in immune precipitation also provides a possible mechanistic explanation for our previous demonstration of the efficacy of rsFc gamma RII as an inhibitor of immune complex-induced inflammation in the Arthus reaction in vivo. RsFc gamma RII inhibited immune complex precipitation in two different experimental systems. First, rsFc gamma RII inhibited the precipitation of 125I-bovine serum albumin (BSA)-anti-BSA complexes in a dose-dependent manner, while an irrelevant protein (soybean trypsin inhibitor) had no effect on the precipitation of the immune complexes. Moreover, rsFc gamma RII inhibited the precipitation of ovalbumin (OVA)-anti-OVA complexes as determined by turbidimetric analysis, where the inhibition of immune complex precipitation by rsFc gamma RII was dose-dependent and was specifically blocked by prior incubation with Fab' fragments of a blocking MoAb to Fc gamma RII. RsFc gamma RII could inhibit the precipitation of BSA-anti-BSA complexes in the presence of excess bystander IgG and did not inhibit complement-mediated prevention of immune precipitation, demonstrating that rsFc gamma RII did not block C1 binding to the BSA-anti-BSA complex. Unlike complement, rsFc gamma RII could not cause re-solubilization of pre-formed precipitated BSA-anti-BSA complexes. Soluble Fc gamma Rs have been detected in biological fluids of normal and inflammatory disease patients, yet the role of sFc gamma R is still unclear. However, they now play a potential role in the modulation of immune complex solubility.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmed A. E., Bird P., McKay I. C., Whaley K. The plasma protein which inhibits complement-mediated prevention of immune precipitation is an Fc binding protein. Immunology. 1989 Jan;66(1):20–25. [PMC free article] [PubMed] [Google Scholar]
- Ahmed A. E., Whaley K. Purification of a plasma protein that inhibits complement-mediated prevention of immune precipitation. Immunology. 1988 May;64(1):45–50. [PMC free article] [PubMed] [Google Scholar]
- Astier A., de la Salle H., Moncuit J., Freund M., Cazenave J. P., Fridman W. H., Hanau D., Teillaud J. L. Detection and quantification of secreted soluble Fc gamma RIIA in human sera by an enzyme-linked immunosorbent assay. J Immunol Methods. 1993 Nov 5;166(1):1–10. doi: 10.1016/0022-1759(93)90323-y. [DOI] [PubMed] [Google Scholar]
- Astier A., de la Salle H., de la Salle C., Bieber T., Esposito-Farese M. E., Freund M., Cazenave J. P., Fridman W. H., Teillaud J. L., Hanau D. Human epidermal Langerhans cells secrete a soluble receptor for IgG (Fc gamma RII/CD32) that inhibits the binding of immune complexes to Fc gamma R+ cells. J Immunol. 1994 Jan 1;152(1):201–212. [PubMed] [Google Scholar]
- Boros P., Odin J. A., Muryoi T., Masur S. K., Bona C., Unkeless J. C. IgM anti-Fc gamma R autoantibodies trigger neutrophil degranulation. J Exp Med. 1991 Jun 1;173(6):1473–1482. doi: 10.1084/jem.173.6.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COCHRANE C. G., WEIGLE W. O. The cutaneous reaction to soluble antigen-antibody complexes; a comparison with the Arthus phenomenon. J Exp Med. 1958 Nov 1;108(5):591–604. doi: 10.1084/jem.108.5.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cochrane C. G. Immunologic tissue injury mediated by neutrophilic leukocytes. Adv Immunol. 1968;9:97–162. doi: 10.1016/s0065-2776(08)60442-3. [DOI] [PubMed] [Google Scholar]
- Czop J., Nussenzweig V. Studies on the mechanism of solubilization of immune precipitates by serum. J Exp Med. 1976 Mar 1;143(3):615–630. doi: 10.1084/jem.143.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duncan A. R., Winter G. The binding site for C1q on IgG. Nature. 1988 Apr 21;332(6166):738–740. doi: 10.1038/332738a0. [DOI] [PubMed] [Google Scholar]
- Fanger M. W., Smyth D. G. The oligosaccharide units of rabbit immunoglobulin G. Asymmetric attachment of C2-oligosaccharide. Biochem J. 1972 May;127(5):767–774. doi: 10.1042/bj1270767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleit H. B., Kobasiuk C. D., Daly C., Furie R., Levy P. C., Webster R. O. A soluble form of Fc gamma RIII is present in human serum and other body fluids and is elevated at sites of inflammation. Blood. 1992 May 15;79(10):2721–2728. [PubMed] [Google Scholar]
- Hulett M. D., Hogarth P. M. Molecular basis of Fc receptor function. Adv Immunol. 1994;57:1–127. doi: 10.1016/s0065-2776(08)60671-9. [DOI] [PubMed] [Google Scholar]
- Ierino F. L., Hulett M. D., McKenzie I. F., Hogarth P. M. Mapping epitopes of human Fc gamma RII (CDw32) with monoclonal antibodies and recombinant receptors. J Immunol. 1993 Mar 1;150(5):1794–1803. [PubMed] [Google Scholar]
- Ierino F. L., Powell M. S., McKenzie I. F., Hogarth P. M. Recombinant soluble human Fc gamma RII: production, characterization, and inhibition of the Arthus reaction. J Exp Med. 1993 Nov 1;178(5):1617–1628. doi: 10.1084/jem.178.5.1617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khayat D., Geffrier C., Yoon S., Scigliano E., Soubrane C., Weil M., Unkeless J. C., Jacquillat C. Soluble circulating Fc gamma receptors in human serum. A new ELISA assay for specific and quantitative detection. J Immunol Methods. 1987 Jun 26;100(1-2):235–241. doi: 10.1016/0022-1759(87)90194-3. [DOI] [PubMed] [Google Scholar]
- Lund J., Winter G., Jones P. T., Pound J. D., Tanaka T., Walker M. R., Artymiuk P. J., Arata Y., Burton D. R., Jefferis R. Human Fc gamma RI and Fc gamma RII interact with distinct but overlapping sites on human IgG. J Immunol. 1991 Oct 15;147(8):2657–2662. [PubMed] [Google Scholar]
- MacIntyre E. A., Roberts P. J., Abdul-Gaffar R., O'Flynn K., Pilkington G. R., Farace F., Morgan J., Linch D. C. Mechanism of human monocyte activation via the 40-kDa Fc receptor for IgG. J Immunol. 1988 Dec 15;141(12):4333–4343. [PubMed] [Google Scholar]
- Mannik M. Rheumatoid factors in the pathogenesis of rheumatoid arthritis. J Rheumatol Suppl. 1992 Jan;32:46–49. [PubMed] [Google Scholar]
- Mitchell W. S., Naama J. K., Veitch J., Whaley K. IgM-RF prevents complement-mediated inhibition of immune precipitation. Immunology. 1984 Jul;52(3):445–448. [PMC free article] [PubMed] [Google Scholar]
- Møller N. P. Fc-mediated immune precipitation. I. A new role of the Fc-portion of IgG. Immunology. 1979 Nov;38(3):631–640. [PMC free article] [PubMed] [Google Scholar]
- Møller N. P., Steensgaard J. Fc-mediated immune precipitation. II. Analysis of precipitating immune complexes by rate-zonal ultracentrifugation. Immunology. 1979 Nov;38(3):641–648. [PMC free article] [PubMed] [Google Scholar]
- Naama J. K., Holme E., Hamilton E., Whaley K. Prevention of immune precipitation by purified components of the alternative pathway. Clin Exp Immunol. 1985 Apr;60(1):169–177. [PMC free article] [PubMed] [Google Scholar]
- Okada M., Udaka K., Utsumi S. Co-operative interaction of subcomponents of the first component of complement with IgG: a functional defect of dimeric Facb from rabbit IgG. Mol Immunol. 1985 Dec;22(12):1399–1406. doi: 10.1016/0161-5890(85)90063-x. [DOI] [PubMed] [Google Scholar]
- Parham P. On the fragmentation of monoclonal IgG1, IgG2a, and IgG2b from BALB/c mice. J Immunol. 1983 Dec;131(6):2895–2902. [PubMed] [Google Scholar]
- Sandilands G. P., Ahmed A. E., Griffiths M. R., Whaley K. Immunohistochemical localization of a plasma protein (glycoprotein 60) which inhibits complement-mediated prevention of immune precipitation. Immunology. 1990 Jul;70(3):303–308. [PMC free article] [PubMed] [Google Scholar]
- Schifferli J. A., Ng Y. C., Peters D. K. The role of complement and its receptor in the elimination of immune complexes. N Engl J Med. 1986 Aug 21;315(8):488–495. doi: 10.1056/NEJM198608213150805. [DOI] [PubMed] [Google Scholar]
- Schifferli J. A., Steiger G., Schapira M. The role of C1, C1-inactivator and C4 in modulating immune precipitation. Clin Exp Immunol. 1985 Jun;60(3):605–612. [PMC free article] [PubMed] [Google Scholar]
- Schifferli J. A., Woo P., Peters D. K. Complement-mediated inhibition of immune precipitation. I. Role of the classical and alternative pathways. Clin Exp Immunol. 1982 Mar;47(3):555–562. [PMC free article] [PubMed] [Google Scholar]
- Shopes B., Weetall M., Holowka D., Baird B. Recombinant human IgG1-murine IgE chimeric Ig. Construction, expression, and binding to human Fc gamma receptors. J Immunol. 1990 Dec 1;145(11):3842–3848. [PubMed] [Google Scholar]
- Takahashi M., Takahashi S., Brade V., Nussenzweig V. Requirements for the solubilization of immune aggregates by complement. The role of the classical pathway. J Clin Invest. 1978 Aug;62(2):349–358. doi: 10.1172/JCI109135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ulvestad E., Matre R., Tønder O. IgG Fc receptors in sera from patients with rheumatoid arthritis and systemic lupus erythematosus. Scand J Rheumatol Suppl. 1988;75:203–208. doi: 10.3109/03009748809096763. [DOI] [PubMed] [Google Scholar]
- WARD P. A., COCHRANE C. G. BOUND COMPLEMENT AND IMMUNOLOGIC INJURY OF BLOOD VESSELS. J Exp Med. 1965 Feb 1;121:215–234. doi: 10.1084/jem.121.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willis H. E., Browder B., Feister A. J., Mohanakumar T., Ruddy S. Monoclonal antibody to human IgG Fc receptors. Cross-linking of receptors induces lysosomal enzyme release and superoxide generation by neutrophils. J Immunol. 1988 Jan 1;140(1):234–239. [PubMed] [Google Scholar]
