Abstract
beta 2-GP1 is a serum protein which influences binding of anticardiolipin antibodies to cardiolipin, may influence induction of these antibodies in animals and may play a role in anticardiolipin-mediated thrombosis. Various investigators have proposed that when beta 2-GP1 binds cardiolipin, structural alterations occur in one or both molecules, resulting in exposure of new epitopes for anticardiolipin binding, but there has been no proof that such alterations occur. Utilizing Fourier transform infrared spectroscopy, this study analysed the structure of cardiolipin and beta 2-GP1 alone, then mixed with each other. For pure cardiolipin, analysis of the CH2 stretching, scissoring and carbonyl bands suggested this molecule assumes a hexagonal crystal lattice packing structure in both anhydrous and aqueous samples. Based on the second derivative analysis of the amide 1 band from the beta 2-GP1 protein backbone, as well as Fourier self-deconvolution and curve fit algorithms, beta 2-GP1 was calculated to contain 18% turns, 37% alpha-helix, and 45% beta-sheet structure. beta 2-GP1 binding with cardiolipin results in a significant change in the conformation as well as geometry of the lipid and protein components. This is indicated by a broadening of the CH stretching band and a marked shift in intensity of the carbonyl band of cardiolipin, indicating less hydrogen bonding. There was a decrease in beta-sheet structure of beta 2-GP1 from 46% to 23% and appearance of 26% to 28% random structure. These findings indicate that mixing beta 2-GP1 with cardiolipin results in profound changes in both molecules which might explain the effect of beta 2-GP1 on anticardiolipin binding activity.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blume A., Hübner W., Messner G. Fourier transform infrared spectroscopy of 13C = O-labeled phospholipids hydrogen bonding to carbonyl groups. Biochemistry. 1988 Oct 18;27(21):8239–8249. doi: 10.1021/bi00421a038. [DOI] [PubMed] [Google Scholar]
- Borchman D., Lamba O. P., Yappert M. C. Structural characterization of lipid membranes from clear and cataractous human lenses. Exp Eye Res. 1993 Aug;57(2):199–208. doi: 10.1006/exer.1993.1115. [DOI] [PubMed] [Google Scholar]
- Cameron D. G., Casal H. L., Gudgin E. F., Mantsch H. H. The gel phase of dipalmitoyl phosphatidylcholine. An infrared characterization of the acyl chain packing. Biochim Biophys Acta. 1980 Mar 13;596(3):463–467. doi: 10.1016/0005-2736(80)90135-2. [DOI] [PubMed] [Google Scholar]
- Cullis P. R., Verkleij A. J., Ververgaert P. H. Polymorphic phase behaviour of cardiolipin as detected by 31P NMR and freeze-fracture techniques. Effects of calcium, dibucaine and chlorpromazine. Biochim Biophys Acta. 1978 Oct 19;513(1):11–20. doi: 10.1016/0005-2736(78)90107-4. [DOI] [PubMed] [Google Scholar]
- Dong A., Huang P., Caughey W. S. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry. 1990 Apr 3;29(13):3303–3308. doi: 10.1021/bi00465a022. [DOI] [PubMed] [Google Scholar]
- Fookson J. E., Wallach D. F. Structural differences among phosphatidylcholine, phosphatidylethanolamine, and mixed phosphatidylcholine/phosphatidylethanolamine multilayers: an infrared absorption study. Arch Biochem Biophys. 1978 Jul;189(1):195–204. doi: 10.1016/0003-9861(78)90132-7. [DOI] [PubMed] [Google Scholar]
- Galli M., Comfurius P., Maassen C., Hemker H. C., de Baets M. H., van Breda-Vriesman P. J., Barbui T., Zwaal R. F., Bevers E. M. Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet. 1990 Jun 30;335(8705):1544–1547. doi: 10.1016/0140-6736(90)91374-j. [DOI] [PubMed] [Google Scholar]
- Gharavi A. E., Harris E. N., Asherson R. A., Hughes G. R. Anticardiolipin antibodies: isotype distribution and phospholipid specificity. Ann Rheum Dis. 1987 Jan;46(1):1–6. doi: 10.1136/ard.46.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris E. N. Antiphospholipid antibodies. Br J Haematol. 1990 Jan;74(1):1–9. doi: 10.1111/j.1365-2141.1990.tb02530.x. [DOI] [PubMed] [Google Scholar]
- Harris E. N., Gharavi A. E., Boey M. L., Patel B. M., Mackworth-Young C. G., Loizou S., Hughes G. R. Anticardiolipin antibodies: detection by radioimmunoassay and association with thrombosis in systemic lupus erythematosus. Lancet. 1983 Nov 26;2(8361):1211–1214. doi: 10.1016/s0140-6736(83)91267-9. [DOI] [PubMed] [Google Scholar]
- Hunt J., Krilis S. The fifth domain of beta 2-glycoprotein I contains a phospholipid binding site (Cys281-Cys288) and a region recognized by anticardiolipin antibodies. J Immunol. 1994 Jan 15;152(2):653–659. [PubMed] [Google Scholar]
- Janoff A. S., Rauch J. The structural specificity of anti-phospholipid antibodies in autoimmune disease. Chem Phys Lipids. 1986 Jun-Jul;40(2-4):315–332. doi: 10.1016/0009-3084(86)90076-9. [DOI] [PubMed] [Google Scholar]
- Loizou S., McCrea J. D., Rudge A. C., Reynolds R., Boyle C. C., Harris E. N. Measurement of anti-cardiolipin antibodies by an enzyme-linked immunosorbent assay (ELISA): standardization and quantitation of results. Clin Exp Immunol. 1985 Dec;62(3):738–745. [PMC free article] [PubMed] [Google Scholar]
- Love P. E., Santoro S. A. Antiphospholipid antibodies: anticardiolipin and the lupus anticoagulant in systemic lupus erythematosus (SLE) and in non-SLE disorders. Prevalence and clinical significance. Ann Intern Med. 1990 May 1;112(9):682–698. doi: 10.7326/0003-4819-112-9-682. [DOI] [PubMed] [Google Scholar]
- Mantsch H. H., Martin A., Cameron D. G. Characterization by infrared spectroscopy of the bilayer to nonbilayer phase transition of phosphatidylethanolamines. Biochemistry. 1981 May 26;20(11):3138–3145. doi: 10.1021/bi00514a024. [DOI] [PubMed] [Google Scholar]
- Matsuura E., Igarashi Y., Yasuda T., Triplett D. A., Koike T. Anticardiolipin antibodies recognize beta 2-glycoprotein I structure altered by interacting with an oxygen modified solid phase surface. J Exp Med. 1994 Feb 1;179(2):457–462. doi: 10.1084/jem.179.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNeil H. P., Chesterman C. N., Krilis S. A. Immunology and clinical importance of antiphospholipid antibodies. Adv Immunol. 1991;49:193–280. doi: 10.1016/s0065-2776(08)60777-4. [DOI] [PubMed] [Google Scholar]
- McNeil H. P., Simpson R. J., Chesterman C. N., Krilis S. A. Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: beta 2-glycoprotein I (apolipoprotein H). Proc Natl Acad Sci U S A. 1990 Jun;87(11):4120–4124. doi: 10.1073/pnas.87.11.4120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rand R. P., Sengupta S. Cardiolipin forms hexagonal structures with divalent cations. Biochim Biophys Acta. 1972 Feb 11;255(2):484–492. doi: 10.1016/0005-2736(72)90152-6. [DOI] [PubMed] [Google Scholar]
- Rauch J., Tannenbaum M., Tannenbaum H., Ramelson H., Cullis P. R., Tilcock C. P., Hope M. J., Janoff A. S. Human hybridoma lupus anticoagulants distinguish between lamellar and hexagonal phase lipid systems. J Biol Chem. 1986 Jul 25;261(21):9672–9677. [PubMed] [Google Scholar]
- Rustin M. H., Bull H. A., Machin S. J., Isenberg D. A., Snaith M. L., Dowd P. M. Effects of the lupus anticoagulant in patients with systemic lupus erythematosus on endothelial cell prostacyclin release and procoagulant activity. J Invest Dermatol. 1988 May;90(5):744–748. doi: 10.1111/1523-1747.ep12560947. [DOI] [PubMed] [Google Scholar]
- Sammaritano L. R., Gharavi A. E., Lockshin M. D. Antiphospholipid antibody syndrome: immunologic and clinical aspects. Semin Arthritis Rheum. 1990 Oct;20(2):81–96. doi: 10.1016/0049-0172(90)90021-7. [DOI] [PubMed] [Google Scholar]
- Schousboe I. beta 2-Glycoprotein I: a plasma inhibitor of the contact activation of the intrinsic blood coagulation pathway. Blood. 1985 Nov;66(5):1086–1091. [PubMed] [Google Scholar]
- Surewicz W. K., Mantsch H. H., Chapman D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry. 1993 Jan 19;32(2):389–394. doi: 10.1021/bi00053a001. [DOI] [PubMed] [Google Scholar]
- Van Venetie R., Verkleij A. J. Analysis of the hexagonal II phase and its relations to lipidic particles and the lamellar phase. A freeze-fracture study. Biochim Biophys Acta. 1981 Jul 20;645(2):262–269. doi: 10.1016/0005-2736(81)90197-8. [DOI] [PubMed] [Google Scholar]
- Van Venetie R., Verkleij A. J. Analysis of the hexagonal II phase and its relations to lipidic particles and the lamellar phase. A freeze-fracture study. Biochim Biophys Acta. 1981 Jul 20;645(2):262–269. doi: 10.1016/0005-2736(81)90197-8. [DOI] [PubMed] [Google Scholar]
