Abstract
A graft-versus-host (GVH) reaction was induced in F1 hybrid mice by the inoculation of spleen cells from one of the parental strains. One week later the spleen cells from the recipients were cultured during the conditions for obtaining a primary immune response in vitro described by Mishell & Dutton (1967). It was found that the antibody response against the thymus-dependent antigen sheep red cells (SRC), as well as the thymus-independent antigen lipopolysaccharide from Escherichia coli 055:B5 (CPS) was markedly depressed. Spleen cells from mice subjected to a GVH reaction (GVH cells) also inhibited the antibody response of normal cells in vitro. The inhibitory effect of the GVH cells on normal cells was not sensitive to treatment with anti-θ serum, but could be completely abolished by treatment with iron powder, which removes adherent cells.
By culturing cells of two different mouse strains together in vitro it was possible to obtain stimulation or inhibition of the antibody response depending on the total cell number per dish.
The relation of these results to the phenomenon of antigenic competition is discussed. It is suggested that antigenic competition is caused by a non-specific inhibition of cell proliferation, possibly mediated by a locally acting factor. Both thymus-derived and bone marrow-derived cell lymphocytes are affected by the phenomenon. The cells initially responsible for the inhibition seem to be antigen-activated thymus-derived cells (T-cells), which by secondarily activated cells such as macrophages inhibit other cells. A GVH reaction, which generally leads to antigenic competition may, when less pronounced, cause stimulation of the antibody response.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersson B., Blomgren H. Evidence for thymus-independent humoral antibody production in mice against polyvinylpyrrolidone and E. coli lipopolysaccharide. Cell Immunol. 1971 Oct;2(5):411–424. doi: 10.1016/0008-8749(71)90052-9. [DOI] [PubMed] [Google Scholar]
- BLAESE R. M., MARTINEZ C., GOOD R. A. IMMUNOLOGIC INCOMPETENCE OF IMMUNOLOGICALLY RUNTED ANIMALS. J Exp Med. 1964 Feb 1;119:211–224. doi: 10.1084/jem.119.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BOYSE E. A. The fate of mouse spleen cells transplanted into homologous and F1 hybrid hosts. Immunology. 1959 Apr;2(2):170–181. [PMC free article] [PubMed] [Google Scholar]
- Baker P. J., Stashak P. W., Amsbaugh D. F., Prescott B., Barth R. F. Evidence for the existence of two functionally distinct types of cells which regulate the antibody response to type 3 pneumococcal polysaccharide. J Immunol. 1970 Dec;105(6):1581–1583. [PubMed] [Google Scholar]
- Basten A., Miller J. F., Warner N. L., Pye J. Specific inactivation of thymus-derived (T) and non-thymus-derived (B) lymphocytes by 125I-labelled antigen. Nat New Biol. 1971 May 26;231(21):104–106. doi: 10.1038/newbio231104a0. [DOI] [PubMed] [Google Scholar]
- Blanden R. V. Increased antibacterial resistance and immunodepression during graft-versus-host reactions in mice. Transplantation. 1969 Jun;7(6):484–497. doi: 10.1097/00007890-196906000-00005. [DOI] [PubMed] [Google Scholar]
- CELADA F., WELSHONS W. J. Demonstration of F1 hybrid anti-parent immunological reaction. Proc Natl Acad Sci U S A. 1962 Mar 15;48:326–331. doi: 10.1073/pnas.48.3.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiller J. M., Habicht G. S., Weigle W. O. Cellular sites of immunologic unresponsiveness. Proc Natl Acad Sci U S A. 1970 Mar;65(3):551–556. doi: 10.1073/pnas.65.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Claman H. N., Chaperon E. A., Hayes L. L. Thymus-marrow immunocompetence. IV. The growth and immunocompetence of transferred marrow, thymus, and spleen cells in parent and F1 hybrid mice. Transplantation. 1969 Feb;7(2):87–98. [PubMed] [Google Scholar]
- Cochrane C. G. Mediators of the arthus and related reactions. Prog Allergy. 1967;11:1–35. [PubMed] [Google Scholar]
- Cohen A., Schlesinger M. Absorption of guinea pig serum with agar. A method for elimination of itscytotoxicity for murine thymus cells. Transplantation. 1970 Jul;10(1):130–132. doi: 10.1097/00007890-197007000-00027. [DOI] [PubMed] [Google Scholar]
- Diener E., Shortman K., Russell P. Induction of immunity and tolerance in vitro in the absence of phagocytic cells. Nature. 1970 Feb 21;225(5234):731–732. doi: 10.1038/225731a0. [DOI] [PubMed] [Google Scholar]
- GORER P. A., BOYSE E. A. Pathological changes in F1 hybrid mice following transplantation of spleen cells from donors of the parental strains. Immunology. 1959 Apr;2(2):182–193. [PMC free article] [PubMed] [Google Scholar]
- Hirst J. A., Dutton R. W. Cell components in the immune response. 3. Neonatal thymectomy: restoration in culture. Cell Immunol. 1970 Jul;1(2):190–195. doi: 10.1016/0008-8749(70)90006-7. [DOI] [PubMed] [Google Scholar]
- Hoffmann M., Dutton R. W. Immune response restoration with macrophage culture supernatants. Science. 1971 Jun 4;172(3987):1047–1048. doi: 10.1126/science.172.3987.1047. [DOI] [PubMed] [Google Scholar]
- Hoffmann M. Peritoneal macrophages in the immune response to SRBC in vitro. Immunology. 1970 Jun;18(6):791–797. [PMC free article] [PubMed] [Google Scholar]
- JERNE N. K., NORDIN A. A. Plaque formation in agar by single antibody-producing cells. Science. 1963 Apr 26;140(3565):405–405. [PubMed] [Google Scholar]
- Katz D. H., Paul W. E., Goidl E. A., Benacerraf B. Carrier function in anti-hapten antibody responses. 3. Stimulation of antibody synthesis and facilitation of hapten-specific secondary antibody responses by graft-versus-host reactions. J Exp Med. 1971 Feb 1;133(2):169–186. doi: 10.1084/jem.133.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koltay M., Kinsky R. G., Arnason B. G., Schaffner J. B. Immunoglobulins and antibody formation in mice during the graft versus host reaction. Immunology. 1965 Dec;9(6):581–590. [PMC free article] [PubMed] [Google Scholar]
- Kreth H. W., Williamson A. R. Cell surveillance model for lymphocyte cooperation. Nature. 1971 Dec 24;234(5330):454–456. doi: 10.1038/234454a0. [DOI] [PubMed] [Google Scholar]
- Lapp W. S., Möller G. Prolonged survival of H-2 incompatible skin allografts on F1 animals treated with parental lymphoid cells. Immunology. 1969 Sep;17(3):339–344. [PMC free article] [PubMed] [Google Scholar]
- Lawrence W., Jr, Simonsen M. The property of "strength" of histocompatibility antigens, and their ability to produce antigenic competition. Transplantation. 1967 Sep 5;5(5):1304–1322. doi: 10.1097/00007890-196709000-00009. [DOI] [PubMed] [Google Scholar]
- Miller J. F., Osoba D. Current concepts of the immunological function of the thymus. Physiol Rev. 1967 Jul;47(3):437–520. doi: 10.1152/physrev.1967.47.3.437. [DOI] [PubMed] [Google Scholar]
- Mishell R. I., Dutton R. W. Immunization of dissociated spleen cell cultures from normal mice. J Exp Med. 1967 Sep 1;126(3):423–442. doi: 10.1084/jem.126.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mosier D. E. A requirement for two cell types for antibody formation in vitro. Science. 1967 Dec 22;158(3808):1573–1575. doi: 10.1126/science.158.3808.1573. [DOI] [PubMed] [Google Scholar]
- Möller G. 19S antibody production against soluble lipopolysaccharide antigens by individual lymphoid cells in vitro. Nature. 1965 Sep 11;207(5002):1166–1168. doi: 10.1038/2071166a0. [DOI] [PubMed] [Google Scholar]
- Möller G., Michael G. Frequency of antigen-sensitive cells to thymus-independent antigens. Cell Immunol. 1971 Aug;2(4):309–316. doi: 10.1016/0008-8749(71)90065-7. [DOI] [PubMed] [Google Scholar]
- Möller G., Sjöberg O. Effect of antigenic competition on antigen-sensitive cells and on adoptively transferred immunocompetent cells. Cell Immunol. 1970 May;1(1):110–121. doi: 10.1016/0008-8749(70)90064-x. [DOI] [PubMed] [Google Scholar]
- Möller G. Suppressive effect of graft versus host reactions on the immune response to heterologous red cells. Immunology. 1971 Apr;20(4):597–609. [PMC free article] [PubMed] [Google Scholar]
- Nisbet N. W., Simonsen M., Zaleski M. The frequency of antigen-sensitive cells in tissue transplantation. A commentary on clonal selection. J Exp Med. 1969 Mar 1;129(3):459–467. doi: 10.1084/jem.129.3.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REIF A. E., ALLEN J. M. THE AKR THYMIC ANTIGEN AND ITS DISTRIBUTION IN LEUKEMIAS AND NERVOUS TISSUES. J Exp Med. 1964 Sep 1;120:413–433. doi: 10.1084/jem.120.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radovich J., Talmage D. W. Antigenic competition: cellular or humoral. Science. 1967 Oct 27;158(3800):512–514. doi: 10.1126/science.158.3800.512. [DOI] [PubMed] [Google Scholar]
- Raff M. C. Role of thymus-derived lymphocytes in the secondary humoral immune response in mice. Nature. 1970 Jun 27;226(5252):1257–1258. doi: 10.1038/2261257a0. [DOI] [PubMed] [Google Scholar]
- Roelants G. E., Askonas B. A. Cell cooperation in antibody induction. The susceptibility of helper cells to specific lethal radioactive antigen. Eur J Immunol. 1971 Jun;1(3):151–157. doi: 10.1002/eji.1830010302. [DOI] [PubMed] [Google Scholar]
- SIMONSEN M. Graft versus host reactions. Their natural history, and applicability as tools of research. Prog Allergy. 1962;6:349–467. [PubMed] [Google Scholar]
- Schimpl A., Wecker E. Reconstitution of a thymus cell-deprived immune system by syngeneic and allogeneic thymocytes in vitro. Eur J Immunol. 1971 Aug;1(4):304–306. doi: 10.1002/eji.1830010419. [DOI] [PubMed] [Google Scholar]
- Schwartz H., Leskowitz S. Antigenic competition in the development of delayed hypersensitivity to the azobenzenearsonate group. Immunochemistry. 1969 May;6(3):503–506. doi: 10.1016/0019-2791(69)90311-5. [DOI] [PubMed] [Google Scholar]
- Sjöberg O., Andersson J., Möller G. Requirement for adherent cells in the primary and secondary immune response in vitro. Eur J Immunol. 1972 Apr;2(2):123–126. doi: 10.1002/eji.1830020206. [DOI] [PubMed] [Google Scholar]
- Sjöberg O. Antigenic competition in vitro of spleen cells subjected to a graft-versus-host reaction. Immunology. 1971 Aug;21(2):351–361. [PMC free article] [PubMed] [Google Scholar]
