Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1991 Dec;86(3):537–543. doi: 10.1111/j.1365-2249.1991.tb02966.x

Inter-mouse strain differences in the in vivo anti-CD3 induced cytokine release.

C Ferran 1, M Dy 1, K Sheehan 1, S Merite 1, R Schreiber 1, P Landais 1, G Grau 1, J Bluestone 1, J F Bach 1, L Chatenoud 1
PMCID: PMC1554204  PMID: 1721015

Abstract

Triggering of the CD3 molecule by in vivo injection of the hamster anti-murine CD3 monoclonal antibody 145-2C11 in adult BALB/c mice leads to massive although transient T cell activation. High levels of tumour necrosis factor (TNF), interferon-gamma (IFN-gamma), IL-2, IL-3 and IL-6 are released into the circulation 1 to 8 h after a single 10 micrograms 145-2C11 i.v. injection. This release induces an impressive self-limited physical reaction associating hypothermia, hypomotility (as assessed by actimetry), diarrhoea, piloerection and even death when high doses (a single dose of greater than 100 micrograms/mouse injection) are administered. In vivo injection of 145-2C11 to other selected mouse strains, namely NZW, CBA/J and C3H/HeJ, induced both different cytokine release patterns and sickness. 145-2C11 induced significant release of TNF and IL-2 in all four strains. At variance, IFN-gamma was only detected in BALB/c mice sera which, in terms of physical reaction (hypothermia and hypomotility) were the most affected. Higher and long-lasting circulating IL-3/GM-CSF levels were present in CBA/J sera, correlating with a later recovery. These results underline heterogeneity in the in vivo cell activation pattern among different mouse strains, when triggering T lymphocytes via the CD3/Ti molecule as compared to exclusive targeting of monocyte/macrophages by means of lipopolysaccharide.

Full text

PDF
537

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggarwal B. B., Eessalu T. E., Hass P. E. Characterization of receptors for human tumour necrosis factor and their regulation by gamma-interferon. Nature. 1985 Dec 19;318(6047):665–667. doi: 10.1038/318665a0. [DOI] [PubMed] [Google Scholar]
  2. Alegre M., Vandenabeele P., Flamand V., Moser M., Leo O., Abramowicz D., Urbain J., Fiers W., Goldman M. Hypothermia and hypoglycemia induced by anti-CD3 monoclonal antibody in mice: role of tumor necrosis factor. Eur J Immunol. 1990 Mar;20(3):707–710. doi: 10.1002/eji.1830200337. [DOI] [PubMed] [Google Scholar]
  3. Beutler B., Krochin N., Milsark I. W., Luedke C., Cerami A. Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance. Science. 1986 May 23;232(4753):977–980. doi: 10.1126/science.3754653. [DOI] [PubMed] [Google Scholar]
  4. Broudy V. C., Kaushansky K., Segal G. M., Harlan J. M., Adamson J. W. Tumor necrosis factor type alpha stimulates human endothelial cells to produce granulocyte/macrophage colony-stimulating factor. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7467–7471. doi: 10.1073/pnas.83.19.7467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chatenoud L., Ferran C., Reuter A., Legendre C., Gevaert Y., Kreis H., Franchimont P., Bach J. F. Systemic reaction to the anti-T-cell monoclonal antibody OKT3 in relation to serum levels of tumor necrosis factor and interferon-gamma [corrected]. N Engl J Med. 1989 May 25;320(21):1420–1421. doi: 10.1056/NEJM198905253202117. [DOI] [PubMed] [Google Scholar]
  6. Croll A. D., Morris A. G. The regulation of gamma-interferon production by interleukins 1 and 2. Cell Immunol. 1986 Oct 1;102(1):33–42. doi: 10.1016/0008-8749(86)90323-0. [DOI] [PubMed] [Google Scholar]
  7. Debets J. M., Van der Linden C. J., Dieteren I. E., Leeuwenberg J. F., Buurman W. A. Fc-receptor cross-linking induces rapid secretion of tumor necrosis factor (cachectin) by human peripheral blood monocytes. J Immunol. 1988 Aug 15;141(4):1197–1201. [PubMed] [Google Scholar]
  8. Dialynas D. P., Quan Z. S., Wall K. A., Pierres A., Quintáns J., Loken M. R., Pierres M., Fitch F. W. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol. 1983 Nov;131(5):2445–2451. [PubMed] [Google Scholar]
  9. Ferran C., Dy M., Merite S., Sheehan K., Schreiber R., Leboulenger F., Landais P., Bluestone J., Bach J. F., Chatenoud L. Reduction of morbidity and cytokine release in anti-CD3 MoAb-treated mice by corticosteroids. Transplantation. 1990 Oct;50(4):642–648. doi: 10.1097/00007890-199010000-00023. [DOI] [PubMed] [Google Scholar]
  10. Ferran C., Sheehan K., Dy M., Schreiber R., Merite S., Landais P., Noel L. H., Grau G., Bluestone J., Bach J. F. Cytokine-related syndrome following injection of anti-CD3 monoclonal antibody: further evidence for transient in vivo T cell activation. Eur J Immunol. 1990 Mar;20(3):509–515. doi: 10.1002/eji.1830200308. [DOI] [PubMed] [Google Scholar]
  11. Ferran C., Sheehan K., Schreiber R., Bach J. F., Chatenoud L. Anti-TNF abrogates the cytokine-related anti-CD3 induced syndrome. Transplant Proc. 1991 Feb;23(1 Pt 1):849–850. [PubMed] [Google Scholar]
  12. Glode L. M., Scher I., Osborne B., Rosenstreich D. L. Cellular mechanism of endotoxin unresponsiveness in C3H/HeJ mice. J Immunol. 1976 Feb;116(2):454–461. [PubMed] [Google Scholar]
  13. Hirsch R., Bluestone J. A., Bare C. V., Gress R. E. Advantages of F(ab')2 fragments of anti-CD3 monoclonal antibody as compared to whole antibody as immunosuppressive agents in mice. Transplant Proc. 1991 Feb;23(1 Pt 1):270–271. [PubMed] [Google Scholar]
  14. Hirsch R., Eckhaus M., Auchincloss H., Jr, Sachs D. H., Bluestone J. A. Effects of in vivo administration of anti-T3 monoclonal antibody on T cell function in mice. I. Immunosuppression of transplantation responses. J Immunol. 1988 Jun 1;140(11):3766–3772. [PubMed] [Google Scholar]
  15. Hirsch R., Gress R. E., Pluznik D. H., Eckhaus M., Bluestone J. A. Effects of in vivo administration of anti-CD3 monoclonal antibody on T cell function in mice. II. In vivo activation of T cells. J Immunol. 1989 Feb 1;142(3):737–743. [PubMed] [Google Scholar]
  16. Jacob C. O., McDevitt H. O. Tumour necrosis factor-alpha in murine autoimmune 'lupus' nephritis. Nature. 1988 Jan 28;331(6154):356–358. doi: 10.1038/331356a0. [DOI] [PubMed] [Google Scholar]
  17. Leo O., Foo M., Sachs D. H., Samelson L. E., Bluestone J. A. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1374–1378. doi: 10.1073/pnas.84.5.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rosenstein M., Ettinghausen S. E., Rosenberg S. A. Extravasation of intravascular fluid mediated by the systemic administration of recombinant interleukin 2. J Immunol. 1986 Sep 1;137(5):1735–1742. [PubMed] [Google Scholar]
  19. Scott D. E., Gause W. C., Finkelman F. D., Steinberg A. D. Anti-CD3 antibody induces rapid expression of cytokine genes in vivo. J Immunol. 1990 Oct 1;145(7):2183–2188. [PubMed] [Google Scholar]
  20. Sultzer B. M. Genetic control of leucocyte responses to endotoxin. Nature. 1968 Sep 21;219(5160):1253–1254. doi: 10.1038/2191253a0. [DOI] [PubMed] [Google Scholar]
  21. Sung S. S., Bjorndahl J. M., Wang C. Y., Kao H. T., Fu S. M. Production of tumor necrosis factor/cachectin by human T cell lines and peripheral blood T lymphocytes stimulated by phorbol myristate acetate and anti-CD3 antibody. J Exp Med. 1988 Mar 1;167(3):937–953. doi: 10.1084/jem.167.3.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Talmadge J. E., Bowersox O., Tribble H., Lee S. H., Shepard H. M., Liggitt D. Toxicity of tumor necrosis factor is synergistic with gamma-interferon and can be reduced with cyclooxygenase inhibitors. Am J Pathol. 1987 Sep;128(3):410–425. [PMC free article] [PubMed] [Google Scholar]
  23. Watson J., Largen M., McAdam K. P. Genetic control of endotoxic responses in mice. J Exp Med. 1978 Jan 1;147(1):39–49. doi: 10.1084/jem.147.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES