Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1992 Feb;87(2):293–297. doi: 10.1111/j.1365-2249.1992.tb02990.x

Concomitant augmentation of CD4+ CD29+ helper inducer and diminution of CD4+ CD45RA+ suppressor inducer subset in patients infected with human T cell lymphotropic virus types I or II.

R B Lal 1, D L Rudolph 1, D S Schmid 1, M D Lairmore 1
PMCID: PMC1554258  PMID: 1370929

Abstract

To examine the immunomodulatory effects of HTLV infection, lymphocyte subset analysis was performed on patients infected with human T cell lymphotropic virus type-I (HTLV-I, n = 6) or -II (HTLV-II, n = 12) and on normal blood donors (n = 16). The percentages of total B lymphocytes (CD19), natural killer (NK) cells (CD16), T lymphocytes and their subsets (CD2, CD3, CD4, CD5, CD7, CD8), and IL-2R (CD25) were found to be within the range found in normal donors. However, the expression of CD8+ HLA-DR+ increased significantly in patients with HTLV-I or HTLV-II infection (14.1 +/- 3.9% and 9.7 +/- 2.4% respectively; P less than 0.01) when compared with controls (3.2 +/- 1.1%). In addition, there was a significantly greater proportion of CD4+CD29+ T lymphocytes (29.3 +/- 6.1% and 31.1 +/- 9.0%; P less than 0.05) with concomitant diminution of CD4+CD45RA+ T lymphocytes (8.3 +/- 3.3% and 11.4 +/- 1.5%; P less than 0.01) in patients infected with HTLV-I or HTLV-II respectively, when compared with controls. The increased percentage of CD4+CD29+ subpopulations showed a direct correlation (rs = 0.86; P less than 0.001) with HTLV-specific antibody production. No difference in the CD8 population coexpressing CD29 and S6F1 (an epitope of LFA-1) were observed in the HTLV-infected group when compared with normal donors and functional analysis exhibited minimal cytotoxicity against lectin labelled heterologous target cells. Thus, the shift in the suppressor/cytotoxic to helper/inducer 'memory' CD4+ may be associated with immunoregulatory abnormalities often found in persons infected with HTLV-I or HTLV-II.

Full text

PDF
293

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akbar A. N., Terry L., Timms A., Beverley P. C., Janossy G. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J Immunol. 1988 Apr 1;140(7):2171–2178. [PubMed] [Google Scholar]
  2. Bell E. B., Sparshott S. M. Interconversion of CD45R subsets of CD4 T cells in vivo. Nature. 1990 Nov 8;348(6297):163–166. doi: 10.1038/348163a0. [DOI] [PubMed] [Google Scholar]
  3. Blattner W. A., Kalyanaraman V. S., Robert-Guroff M., Lister T. A., Galton D. A., Sarin P. S., Crawford M. H., Catovsky D., Greaves M., Gallo R. C. The human type-C retrovirus, HTLV, in Blacks from the Caribbean region, and relationship to adult T-cell leukemia/lymphoma. Int J Cancer. 1982 Sep 15;30(3):257–264. doi: 10.1002/ijc.2910300302. [DOI] [PubMed] [Google Scholar]
  4. Byrne J. A., Butler J. L., Cooper M. D. Differential activation requirements for virgin and memory T cells. J Immunol. 1988 Nov 15;141(10):3249–3257. [PubMed] [Google Scholar]
  5. De B. K., Srinivasan A. Detection of human immunodeficiency virus (HIV) and human lymphotropic virus (HTLV) type I or II dual infections by polymerase chain reaction. Oncogene. 1989 Dec;4(12):1533–1535. [PubMed] [Google Scholar]
  6. Imamura N., Inada T., Mtasiwa D. M., Kuramoto A. Phenotype and function of Japanese adult T-cell leukaemia cells. Lancet. 1989 Jul 22;2(8656):214–214. doi: 10.1016/s0140-6736(89)90393-0. [DOI] [PubMed] [Google Scholar]
  7. Itoyama Y., Kira J., Fujii N., Goto I., Yamamoto N. Increases in helper inducer T cells and activated T cells in HTLV-I-associated myelopathy. Ann Neurol. 1989 Aug;26(2):257–262. doi: 10.1002/ana.410260212. [DOI] [PubMed] [Google Scholar]
  8. Itoyama Y., Minato S., Kira J., Goto I., Sato H., Okochi K., Yamamoto N. Altered subsets of peripheral blood lymphocytes in patients with HTLV-I associated myelopathy (HAM). Neurology. 1988 May;38(5):816–818. doi: 10.1212/wnl.38.5.816. [DOI] [PubMed] [Google Scholar]
  9. Jacobson S., Gupta A., Mattson D., Mingioli E., McFarlin D. E. Immunological studies in tropical spastic paraparesis. Ann Neurol. 1990 Feb;27(2):149–156. doi: 10.1002/ana.410270209. [DOI] [PubMed] [Google Scholar]
  10. Kalish R. S., Morimoto C., Schlossman S. F. Generation of CD8 (T8) cytotoxic cells has a preferential requirement for CD4+2H4- inducer cells. Cell Immunol. 1988 Feb;111(2):379–389. doi: 10.1016/0008-8749(88)90101-3. [DOI] [PubMed] [Google Scholar]
  11. Klimas N. G., Blaney N. T., Morgan R. O., Chitwood D., Milles K., Lee H., Fletcher M. A. Immune function and anti-HTLV-I/II status in anti-HIV-1-negative intravenous drug users receiving methadone. Am J Med. 1991 Feb;90(2):163–170. [PubMed] [Google Scholar]
  12. Lairmore M. D., Jacobson S., Gracia F., De B. K., Castillo L., Larreategui M., Roberts B. D., Levine P. H., Blattner W. A., Kaplan J. E. Isolation of human T-cell lymphotropic virus type 2 from Guaymi Indians in Panama. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8840–8844. doi: 10.1073/pnas.87.22.8840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lal R. B., Hira S. K., Dhawan R. R., Perine P. L. Long-term preservation of whole blood samples for flow cytometry analysis in normal and HIV-infected individuals from Africa. Int J STD AIDS. 1990 Jan;1(1):38–45. doi: 10.1177/095646249000100110. [DOI] [PubMed] [Google Scholar]
  14. Lal R. B., Rudolph D. L., Lairmore M. D., Khabbaz R. F., Garfield M., Coligan J. E., Folks T. M. Serologic discrimination of human T cell lymphotropic virus infection by using a synthetic peptide-based enzyme immunoassay. J Infect Dis. 1991 Jan;163(1):41–46. doi: 10.1093/infdis/163.1.41. [DOI] [PubMed] [Google Scholar]
  15. Lal R. B., Rudolph D. L., Roberts C., Honda M. Elevated levels of soluble CD8 and soluble CD25 in patients with human T cell leukemia virus type I-associated myelopathy and adult T cell leukemia. J Infect Dis. 1991 Aug;164(2):429–430. doi: 10.1093/infdis/164.2.429. [DOI] [PubMed] [Google Scholar]
  16. Morimoto C., Letvin N. L., Boyd A. W., Hagan M., Brown H. M., Kornacki M. M., Schlossman S. F. The isolation and characterization of the human helper inducer T cell subset. J Immunol. 1985 Jun;134(6):3762–3769. [PubMed] [Google Scholar]
  17. Morimoto C., Letvin N. L., Distaso J. A., Aldrich W. R., Schlossman S. F. The isolation and characterization of the human suppressor inducer T cell subset. J Immunol. 1985 Mar;134(3):1508–1515. [PubMed] [Google Scholar]
  18. Morimoto C., Rudd C. E., Letvin N. L., Schlossman S. F. A novel epitope of the LFA-1 antigen which can distinguish killer effector and suppressor cells in human CD8 cells. Nature. 1987 Dec 3;330(6147):479–482. doi: 10.1038/330479a0. [DOI] [PubMed] [Google Scholar]
  19. Osame M., Matsumoto M., Usuku K., Izumo S., Ijichi N., Amitani H., Tara M., Igata A. Chronic progressive myelopathy associated with elevated antibodies to human T-lymphotropic virus type I and adult T-cell leukemialike cells. Ann Neurol. 1987 Feb;21(2):117–122. doi: 10.1002/ana.410210203. [DOI] [PubMed] [Google Scholar]
  20. Osame M., Usuku K., Izumo S., Ijichi N., Amitani H., Igata A., Matsumoto M., Tara M. HTLV-I associated myelopathy, a new clinical entity. Lancet. 1986 May 3;1(8488):1031–1032. doi: 10.1016/s0140-6736(86)91298-5. [DOI] [PubMed] [Google Scholar]
  21. Powrie F., Mason D. Phenotypic and functional heterogeneity of CD4+ T cells. Immunol Today. 1988 Sep;9(9):274–277. doi: 10.1016/0167-5699(88)91309-6. [DOI] [PubMed] [Google Scholar]
  22. Prince H. E. American blood donors seropositive for human T-lymphotropic virus types I/II exhibit normal lymphocyte subsets. Transfusion. 1990 Nov-Dec;30(9):787–790. doi: 10.1046/j.1537-2995.1990.30991048783.x. [DOI] [PubMed] [Google Scholar]
  23. Richardson J. H., Edwards A. J., Cruickshank J. K., Rudge P., Dalgleish A. G. In vivo cellular tropism of human T-cell leukemia virus type 1. J Virol. 1990 Nov;64(11):5682–5687. doi: 10.1128/jvi.64.11.5682-5687.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rosenblatt J. D., Plaeger-Marshall S., Giorgi J. V., Swanson P., Chen I. S., Chin E., Wang H. J., Canavaggio M., Hausner M. A., Black A. C. A clinical, hematologic, and immunologic analysis of 21 HTLV-II-infected intravenous drug users. Blood. 1990 Jul 15;76(2):409–417. [PubMed] [Google Scholar]
  25. Rudd C. E., Anderson P., Morimoto C., Streuli M., Schlossman S. F. Molecular interactions, T-cell subsets and a role of the CD4/CD8:p56lck complex in human T-cell activation. Immunol Rev. 1989 Oct;111:225–266. doi: 10.1111/j.1600-065x.1989.tb00548.x. [DOI] [PubMed] [Google Scholar]
  26. Sanders M. E., Makgoba M. W., Sharrow S. O., Stephany D., Springer T. A., Young H. A., Shaw S. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol. 1988 Mar 1;140(5):1401–1407. [PubMed] [Google Scholar]
  27. Shaw G. M., Broder S., Essex M., Gallo R. C. Human T-cell leukemia virus: its discovery and role in leukemogenesis and immunosuppression. Adv Intern Med. 1984;30:1–27. [PubMed] [Google Scholar]
  28. Sohen S., Rothstein D. M., Tallman T., Gaudette D., Schlossman S. F., Morimoto C. The functional heterogeneity of CD8+ cells defined by anti-CD45RA (2H4) and anti-CD29 (4B4) antibodies. Cell Immunol. 1990 Jun;128(1):314–328. doi: 10.1016/0008-8749(90)90028-p. [DOI] [PubMed] [Google Scholar]
  29. Tanaka Y., Oda S., Nagata K., Mori N., Sakamoto H., Eto S., Yamashita U. Immunological functions and phenotypes of peripheral blood lymphocytes from human T-cell leukemia virus-I carriers. J Clin Immunol. 1989 Nov;9(6):477–484. doi: 10.1007/BF00918017. [DOI] [PubMed] [Google Scholar]
  30. Tendler C. L., Greenberg S. J., Blattner W. A., Manns A., Murphy E., Fleisher T., Hanchard B., Morgan O., Burton J. D., Nelson D. L. Transactivation of interleukin 2 and its receptor induces immune activation in human T-cell lymphotropic virus type I-associated myelopathy: pathogenic implications and a rationale for immunotherapy. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5218–5222. doi: 10.1073/pnas.87.13.5218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tomkinson B. E., Brown M. C., Ip S. H., Carrabis S., Sullivan J. L. Soluble CD8 during T cell activation. J Immunol. 1989 Apr 1;142(7):2230–2236. [PubMed] [Google Scholar]
  32. Yasuda K., Sei Y., Yokoyama M. M., Tanaka K., Hara A. Healthy HTLV-I carriers in Japan: the haematological and immunological characteristics. Br J Haematol. 1986 Sep;64(1):195–203. doi: 10.1111/j.1365-2141.1986.tb07587.x. [DOI] [PubMed] [Google Scholar]
  33. deShazo R. D., Chadha N., Morgan J. E., Shorty V. J., Rangan S. R., Kalyanaraman V. S., Hyslop N., Chapman Y., O'Dea S. Immunologic assessment of a cluster of asymptomatic HTLV-I-infected individuals in New Orleans. Am J Med. 1989 Jan;86(1):65–70. doi: 10.1016/0002-9343(89)90231-3. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES