Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1992 Feb;87(2):329–335. doi: 10.1111/j.1365-2249.1992.tb02996.x

Biochemical and functional characterization of the leucocyte tyrosine phosphatase CD45 (CD45RO, 180 kD) from human neutrophils. In vivo upregulation of CD45RO plasma membrane expression on patients undergoing haemodialysis.

R Pulido 1, V Alvarez 1, F Mollinedo 1, F Sánchez-Madrid 1
PMCID: PMC1554261  PMID: 1370931

Abstract

The biochemical and functional characterization, and the regulation of plasma membrane expression of the leucocyte tyrosine phosphatase CD45, have been investigated in neutrophils from healthy donors and patients undergoing haemodialysis. CD45 proteins of 180 kD and 130-150 kD were precipitated from neutrophils from both healthy subjects and haemodialysed patients. Prolonged storing, as well as trypsin treatment of samples containing the 180-kD CD45 protein, generated the 130-150-kD polypeptides. The 130-150-kD CD45 polypeptides carried extracellular CD45 epitopes, including the sialic acid-related UCHL1 epitope (CD45RO). Furthermore, these trypsin-generated CD45 polypeptides did not possess phosphatase activity, which could be detected on the 180-kD protein. A remarkable quantitative increase of cell surface expression of the neutrophil CD45 components was detected both after in vitro neutrophil activation and after dialysis treatment with neutropenic membranes. The CD45 biochemical pattern did not qualitatively change upon either in vitro or in vivo dialysis-induced neutrophil activation. The upregulated expression of CD45 on neutrophils from dialysed patients correlated with the neutropenic effect induced by the different dialyser membranes. Maximal upregulation of CD45 expression was observed after 15 min of dialysis with neutropenic membranes, and normal expression levels were restored after 1 h. By contrast, increase of CD45 plasma membrane expression induced in vitro by treatment of normal neutrophils with the degranulatory agents fMLP or Ca2+ ionophore was maintained. These results demonstrate that neutrophil cell surface expression of the 180-kD CD45 protein is upregulated during the in vivo haemodialysis process, and suggest that a proteolytic activity could regulate the enzymatic activity of CD45 by degranulation of its cytoplasmic phosphatase domains.

Full text

PDF
329

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnaout M. A., Hakim R. M., Todd R. F., 3rd, Dana N., Colten H. R. Increased expression of an adhesion-promoting surface glycoprotein in the granulocytopenia of hemodialysis. N Engl J Med. 1985 Feb 21;312(8):457–462. doi: 10.1056/NEJM198502213120801. [DOI] [PubMed] [Google Scholar]
  2. Arnaout M. A. Leukocyte adhesion molecules deficiency: its structural basis, pathophysiology and implications for modulating the inflammatory response. Immunol Rev. 1990 Apr;114:145–180. doi: 10.1111/j.1600-065x.1990.tb00564.x. [DOI] [PubMed] [Google Scholar]
  3. Brubaker L. H., Nolph K. D. Mechanisms of recovery from neutropenia induced by hemodialysis. Blood. 1971 Nov;38(5):623–631. [PubMed] [Google Scholar]
  4. Charbonneau H., Tonks N. K., Walsh K. A., Fischer E. H. The leukocyte common antigen (CD45): a putative receptor-linked protein tyrosine phosphatase. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7182–7186. doi: 10.1073/pnas.85.19.7182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen M. S., Elliott D. M., Chaplinski T., Pike M. M., Niedel J. E. A defect in the oxidative metabolism of human polymorphonuclear leukocytes that remain in circulation early in hemodialysis. Blood. 1982 Dec;60(6):1283–1289. [PubMed] [Google Scholar]
  6. Craddock P. R., Fehr J., Brigham K. L., Kronenberg R. S., Jacob H. S. Complement and leukocyte-mediated pulmonary dysfunction in hemodialysis. N Engl J Med. 1977 Apr 7;296(14):769–774. doi: 10.1056/NEJM197704072961401. [DOI] [PubMed] [Google Scholar]
  7. Ewald S. J., Refling P. H. Co-immunoprecipitation of the Ly-5 molecule and an endogenous protease: a proteolytic system requiring a reducing agent and Ca2+1. J Immunol. 1985 Apr;134(4):2513–2519. [PubMed] [Google Scholar]
  8. Fearon D. T., Collins L. A. Increased expression of C3b receptors on polymorphonuclear leukocytes induced by chemotactic factors and by purification procedures. J Immunol. 1983 Jan;130(1):370–375. [PubMed] [Google Scholar]
  9. Gutkind J. S., Robbins K. C. Translocation of the FGR protein-tyrosine kinase as a consequence of neutrophil activation. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8783–8787. doi: 10.1073/pnas.86.22.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harvath L., Balke J. A., Christiansen N. P., Russell A. A., Skubitz K. M. Selected antibodies to leukocyte common antigen (CD45) inhibit human neutrophil chemotaxis. J Immunol. 1991 Feb 1;146(3):949–957. [PubMed] [Google Scholar]
  11. Kaplow L. S., Goffinet J. A. Profound neutropenia during the early phase of hemodialysis. JAMA. 1968 Mar 25;203(13):1135–1137. [PubMed] [Google Scholar]
  12. King P. D., Batchelor A. H., Lawlor P., Katz D. R. The role of CD44, CD45, CD45RO, CD46 and CD55 as potential anti-adhesion molecules involved in the binding of human tonsillar T cells to phorbol 12-myristate 13-acetate-differentiated U-937 cells. Eur J Immunol. 1990 Feb;20(2):363–368. doi: 10.1002/eji.1830200220. [DOI] [PubMed] [Google Scholar]
  13. Lacal P., Pulido R., Sánchez-Madrid F., Cabañas C., Mollinedo F. Intracellular localization of a leukocyte adhesion glycoprotein family in the tertiary granules of human neutrophils. Biochem Biophys Res Commun. 1988 Jul 29;154(2):641–647. doi: 10.1016/0006-291x(88)90187-8. [DOI] [PubMed] [Google Scholar]
  14. Lacal P., Pulido R., Sánchez-Madrid F., Mollinedo F. Intracellular location of T200 and Mo1 glycoproteins in human neutrophils. J Biol Chem. 1988 Jul 15;263(20):9946–9951. [PubMed] [Google Scholar]
  15. Ledbetter J. A., Tonks N. K., Fischer E. H., Clark E. A. CD45 regulates signal transduction and lymphocyte activation by specific association with receptor molecules on T or B cells. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8628–8632. doi: 10.1073/pnas.85.22.8628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee J., Hakim R. M., Fearon D. T. Increased expression of the C3b receptor by neutrophils and complement activation during haemodialysis. Clin Exp Immunol. 1984 Apr;56(1):205–214. [PMC free article] [PubMed] [Google Scholar]
  17. Lewis S. L., Van Epps D. E., Chenoweth D. E. Leukocyte C5a receptor modulation during hemodialysis. Kidney Int. 1987 Jan;31(1):112–120. doi: 10.1038/ki.1987.17. [DOI] [PubMed] [Google Scholar]
  18. Mollinedo F., Schneider D. L. Intracellular organelle motility and membrane fusion processes in human neutrophils upon cell activation. FEBS Lett. 1987 Jun 15;217(2):158–162. doi: 10.1016/0014-5793(87)80655-5. [DOI] [PubMed] [Google Scholar]
  19. Pasternack M. S., Sitkovsky M. V., Eisen H. N. The site of action of N-alpha-tosyl-L-lysyl-chloromethyl-ketone (TLCK) on cloned cytotoxic T lymphocytes. J Immunol. 1983 Nov;131(5):2477–2483. [PubMed] [Google Scholar]
  20. Pitzalis C., Kingsley G., Haskard D., Panayi G. The preferential accumulation of helper-inducer T lymphocytes in inflammatory lesions: evidence for regulation by selective endothelial and homotypic adhesion. Eur J Immunol. 1988 Sep;18(9):1397–1404. doi: 10.1002/eji.1830180915. [DOI] [PubMed] [Google Scholar]
  21. Pulido R., Cebrián M., Acevedo A., de Landázuri M. O., Sánchez-Madrid F. Comparative biochemical and tissue distribution study of four distinct CD45 antigen specificities. J Immunol. 1988 Jun 1;140(11):3851–3857. [PubMed] [Google Scholar]
  22. Pulido R., Lacal P., Mollinedo F., Sánchez-Madrid F. Biochemical and antigenic characterization of CD45 polypeptides expressed on plasma membrane and internal granules of human neutrophils. FEBS Lett. 1989 Jun 5;249(2):337–342. doi: 10.1016/0014-5793(89)80654-4. [DOI] [PubMed] [Google Scholar]
  23. Pulido R., Sánchez-Madrid F. Biochemical nature and topographic localization of epitopes defining four distinct CD45 antigen specificities. Conventional CD45, CD45R, 180 kDa (UCHL1) and 220/205/190 kDa. J Immunol. 1989 Sep 15;143(6):1930–1936. [PubMed] [Google Scholar]
  24. Saltini C., Kirby M., Trapnell B. C., Tamura N., Crystal R. G. Biased accumulation of T lymphocytes with "memory"-type CD45 leukocyte common antigen gene expression on the epithelial surface of the human lung. J Exp Med. 1990 Apr 1;171(4):1123–1140. doi: 10.1084/jem.171.4.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sanders M. E., Makgoba M. W., Sharrow S. O., Stephany D., Springer T. A., Young H. A., Shaw S. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol. 1988 Mar 1;140(5):1401–1407. [PubMed] [Google Scholar]
  26. Schleiffenbaum B., Moser R., Patarroyo M., Fehr J. The cell surface glycoprotein Mac-1 (CD11b/CD18) mediates neutrophil adhesion and modulates degranulation independently of its quantitative cell surface expression. J Immunol. 1989 May 15;142(10):3537–3545. [PubMed] [Google Scholar]
  27. Shah V. O., Civin C. I., Loken M. R. Flow cytometric analysis of human bone marrow. IV. Differential quantitative expression of T-200 common leukocyte antigen during normal hemopoiesis. J Immunol. 1988 Mar 15;140(6):1861–1867. [PubMed] [Google Scholar]
  28. Skubitz K. M., Craddock P. R. Reversal of hemodialysis granulocytopenia and pulmonary leukostasis: A clinical manifestation of selective down-regulation of granulocyte responses to C5adesarg. J Clin Invest. 1981 May;67(5):1383–1391. doi: 10.1172/JCI110166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Smith S. H., Brown M. H., Rowe D., Callard R. E., Beverley P. C. Functional subsets of human helper-inducer cells defined by a new monoclonal antibody, UCHL1. Immunology. 1986 May;58(1):63–70. [PMC free article] [PubMed] [Google Scholar]
  30. Springer T. A., Thompson W. S., Miller L. J., Schmalstieg F. C., Anderson D. C. Inherited deficiency of the Mac-1, LFA-1, p150,95 glycoprotein family and its molecular basis. J Exp Med. 1984 Dec 1;160(6):1901–1918. doi: 10.1084/jem.160.6.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Thomas M. L., Lefrançois L. Differential expression of the leucocyte-common antigen family. Immunol Today. 1988 Oct;9(10):320–326. doi: 10.1016/0167-5699(88)91326-6. [DOI] [PubMed] [Google Scholar]
  32. Thomas M. L. The leukocyte common antigen family. Annu Rev Immunol. 1989;7:339–369. doi: 10.1146/annurev.iy.07.040189.002011. [DOI] [PubMed] [Google Scholar]
  33. Todd R. F., 3rd, Arnaout M. A., Rosin R. E., Crowley C. A., Peters W. A., Babior B. M. Subcellular localization of the large subunit of Mo1 (Mo1 alpha; formerly gp 110), a surface glycoprotein associated with neutrophil adhesion. J Clin Invest. 1984 Oct;74(4):1280–1290. doi: 10.1172/JCI111538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vedder N. B., Harlan J. M. Increased surface expression of CD11b/CD18 (Mac-1) is not required for stimulated neutrophil adherence to cultured endothelium. J Clin Invest. 1988 Mar;81(3):676–682. doi: 10.1172/JCI113372. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES