Abstract
The expression of the selectin receptor LAM-1/Leu 8 was analysed in normal and in inflamed liver tissue, and its expression on mononuclear inflammatory cells was correlated with their topographical distribution in various compartments of the inflamed liver, in order to obtain new insights on possible molecular mechanisms involved in the traffic of mononuclear inflammatory cells throughout the diseased hepatic parenchyma. In normal liver tissue, few scattered mononuclear cells in portal and lobular parenchyma corresponded to both CD4+ and CD8+, as well as to CD45RA+ (2H4+) naive and CD45RO+ (UCHL1+) memory T cells, and were LAM-1/Leu 8+. In acute and chronic inflamed liver biopsies, CD45RO+ (UCHL1+) CD4+ and CD8+ memory T cells largely predominated in both portal and lobular parenchyma. The expression of LAM-1/Leu 8 antigen on these memory T cells varied according to their localization in the liver parenchyma, and it was not correlated with specific aetiological causes. In acute hepatitis, the vast majority of T lymphocytes were LAM-1/Leu 8-. In chronic active hepatitis, memory T cells in portal tracts expressed LAM-1/Leu 8, whereas virtually all intralobular T cells accumulating in areas of periportal and intralobular inflammation were LAM-1/Leu 8-. In chronic persistent hepatitis, the LAM-1/Leu 8+ T cells largely predominated among the numerous mononuclear inflammatory cells within enlarged portal tracts, whereas LAM-1/Leu 8- T cells were restricted to areas of intralobular 'spotty' inflammation. Therefore, two phenotypical populations can be recognized among the memory T cells in inflamed liver tissue, according to their topographical localization: LAM-1/Leu 8+ T cells predominating in portal tracts, and LAM-1/Leu 8- T cells predominating in the lobular parenchyma. These data show that during their migration through the inflamed liver parenchyma, memory T lymphocytes undergo phenotypical changes (LAM-1/Leu 8 shedding) according to their localization in different liver compartments (portal tracts vs. lobular parenchyma), suggesting multiple cellular and molecular mechanisms involved in the regulation of the leucocyte traffic through inflamed liver tissue.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abel E. A., Wood G. S., Hoppe R. T., Warnke R. A. Expression of Leu-8 antigen, a majority T-cell marker, is uncommon in mycosis fungoides. J Invest Dermatol. 1985 Sep;85(3):199–202. doi: 10.1111/1523-1747.ep12276668. [DOI] [PubMed] [Google Scholar]
- Anderson D. C., Abbassi O., Kishimoto T. K., Koenig J. M., McIntire L. V., Smith C. W. Diminished lectin-, epidermal growth factor-, complement binding domain-cell adhesion molecule-1 on neonatal neutrophils underlies their impaired CD18-independent adhesion to endothelial cells in vitro. J Immunol. 1991 May 15;146(10):3372–3379. [PubMed] [Google Scholar]
- Berg M., James S. P. Human neutrophils release the Leu-8 lymph node homing receptor during cell activation. Blood. 1990 Dec 1;76(11):2381–2388. [PubMed] [Google Scholar]
- Bührer C., Berlin C., Thiele H. G., Hamann A. Lymphocyte activation and expression of the human leucocyte-endothelial cell adhesion molecule 1 (Leu-8/TQ1 antigen). Immunology. 1990 Nov;71(3):442–448. [PMC free article] [PubMed] [Google Scholar]
- Camerini D., James S. P., Stamenkovic I., Seed B. Leu-8/TQ1 is the human equivalent of the Mel-14 lymph node homing receptor. Nature. 1989 Nov 2;342(6245):78–82. doi: 10.1038/342078a0. [DOI] [PubMed] [Google Scholar]
- Demetris A. J., Sever C., Kakizoe S., Oguma S., Starzl T. E., Jaffe R. S100 protein positive dendritic cells in primary biliary cirrhosis and other chronic inflammatory liver diseases. Relevance to pathogenesis? Am J Pathol. 1989 Apr;134(4):741–747. [PMC free article] [PubMed] [Google Scholar]
- Geoffroy J. S., Rosen S. D. Demonstration that a lectin-like receptor (gp90MEL) directly mediates adhesion of lymphocytes to high endothelial venules of lymph nodes. J Cell Biol. 1989 Nov;109(5):2463–2469. doi: 10.1083/jcb.109.5.2463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffin J. D., Spertini O., Ernst T. J., Belvin M. P., Levine H. B., Kanakura Y., Tedder T. F. Granulocyte-macrophage colony-stimulating factor and other cytokines regulate surface expression of the leukocyte adhesion molecule-1 on human neutrophils, monocytes, and their precursors. J Immunol. 1990 Jul 15;145(2):576–584. [PubMed] [Google Scholar]
- Hart D. N., Fabre J. W. Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain. J Exp Med. 1981 Aug 1;154(2):347–361. doi: 10.1084/jem.154.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jung T. M., Gallatin W. M., Weissman I. L., Dailey M. O. Down-regulation of homing receptors after T cell activation. J Immunol. 1988 Dec 15;141(12):4110–4117. [PubMed] [Google Scholar]
- Jutila M. A., Rott L., Berg E. L., Butcher E. C. Function and regulation of the neutrophil MEL-14 antigen in vivo: comparison with LFA-1 and MAC-1. J Immunol. 1989 Nov 15;143(10):3318–3324. [PubMed] [Google Scholar]
- Kanof M. E., James S. P. Leu-8 antigen expression is diminished during cell activation but does not correlate with effector function of activated T lymphocytes. J Immunol. 1988 Jun 1;140(11):3701–3706. [PubMed] [Google Scholar]
- Kanof M. E., Strober W., Fiocchi C., Zeitz M., James S. P. CD4 positive Leu-8 negative helper-inducer T cells predominate in the human intestinal lamina propria. J Immunol. 1988 Nov 1;141(9):3029–3036. [PubMed] [Google Scholar]
- Kansas G. S., Wood G. S., Fishwild D. M., Engleman E. G. Functional characterization of human T lymphocyte subsets distinguished by monoclonal anti-leu-8. J Immunol. 1985 May;134(5):2995–3002. [PubMed] [Google Scholar]
- Kishimoto T. K., Jutila M. A., Berg E. L., Butcher E. C. Neutrophil Mac-1 and MEL-14 adhesion proteins inversely regulated by chemotactic factors. Science. 1989 Sep 15;245(4923):1238–1241. doi: 10.1126/science.2551036. [DOI] [PubMed] [Google Scholar]
- Kishimoto T. K., Jutila M. A., Butcher E. C. Identification of a human peripheral lymph node homing receptor: a rapidly down-regulated adhesion molecule. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2244–2248. doi: 10.1073/pnas.87.6.2244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo G., Choo Q. L., Alter H. J., Gitnick G. L., Redeker A. G., Purcell R. H., Miyamura T., Dienstag J. L., Alter M. J., Stevens C. E. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science. 1989 Apr 21;244(4902):362–364. doi: 10.1126/science.2496467. [DOI] [PubMed] [Google Scholar]
- Lewinsohn D. M., Bargatze R. F., Butcher E. C. Leukocyte-endothelial cell recognition: evidence of a common molecular mechanism shared by neutrophils, lymphocytes, and other leukocytes. J Immunol. 1987 Jun 15;138(12):4313–4321. [PubMed] [Google Scholar]
- Rijlaarsdam J. U., Boorsma D. M., de Haan P., Sampat S., Willemze R. The significance of Leu 8 negative T cells in lymphoid skin infiltrates: malignant transformation, selective homing or T-cell activation? Br J Dermatol. 1990 Nov;123(5):587–593. doi: 10.1111/j.1365-2133.1990.tb01475.x. [DOI] [PubMed] [Google Scholar]
- Sanders M. E., Makgoba M. W., Sharrow S. O., Stephany D., Springer T. A., Young H. A., Shaw S. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol. 1988 Mar 1;140(5):1401–1407. [PubMed] [Google Scholar]
- Smith C. W., Kishimoto T. K., Abbassi O., Hughes B., Rothlein R., McIntire L. V., Butcher E., Anderson D. C., Abbass O. Chemotactic factors regulate lectin adhesion molecule 1 (LECAM-1)-dependent neutrophil adhesion to cytokine-stimulated endothelial cells in vitro. J Clin Invest. 1991 Feb;87(2):609–618. doi: 10.1172/JCI115037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spertini O., Kansas G. S., Munro J. M., Griffin J. D., Tedder T. F. Regulation of leukocyte migration by activation of the leukocyte adhesion molecule-1 (LAM-1) selectin. Nature. 1991 Feb 21;349(6311):691–694. doi: 10.1038/349691a0. [DOI] [PubMed] [Google Scholar]
- Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
- Stoolman L. M. Adhesion molecules controlling lymphocyte migration. Cell. 1989 Mar 24;56(6):907–910. doi: 10.1016/0092-8674(89)90620-x. [DOI] [PubMed] [Google Scholar]
- Tedder T. F., Isaacs C. M., Ernst T. J., Demetri G. D., Adler D. A., Disteche C. M. Isolation and chromosomal localization of cDNAs encoding a novel human lymphocyte cell surface molecule, LAM-1. Homology with the mouse lymphocyte homing receptor and other human adhesion proteins. J Exp Med. 1989 Jul 1;170(1):123–133. doi: 10.1084/jem.170.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tedder T. F., Matsuyama T., Rothstein D., Schlossman S. F., Morimoto C. Human antigen-specific memory T cells express the homing receptor (LAM-1) necessary for lymphocyte recirculation. Eur J Immunol. 1990 Jun;20(6):1351–1355. doi: 10.1002/eji.1830200622. [DOI] [PubMed] [Google Scholar]
- Tedder T. F., Penta A. C., Levine H. B., Freedman A. S. Expression of the human leukocyte adhesion molecule, LAM1. Identity with the TQ1 and Leu-8 differentiation antigens. J Immunol. 1990 Jan 15;144(2):532–540. [PubMed] [Google Scholar]
- Volpes R., van den Oord J. J., Desmet V. J. Memory T cells represent the predominant lymphocyte subset in acute and chronic liver inflammation. Hepatology. 1991 May;13(5):826–829. [PubMed] [Google Scholar]
- Yednock T. A., Rosen S. D. Lymphocyte homing. Adv Immunol. 1989;44:313–378. doi: 10.1016/s0065-2776(08)60645-8. [DOI] [PubMed] [Google Scholar]
- van den Oord J. J., De Vos R., Facchetti F., Delabie J., De Wolf-Peeters C., Desmet V. J. Distribution of non-lymphoid, inflammatory cells in chronic HBV infection. J Pathol. 1990 Mar;160(3):223–230. doi: 10.1002/path.1711600308. [DOI] [PubMed] [Google Scholar]

