Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1992 Sep;89(3):502–508. doi: 10.1111/j.1365-2249.1992.tb06989.x

Production of reactive nitrogen intermediates by bone marrow-derived macrophages on treatment with cisplatin in vitro.

A Sodhi 1, A Suresh 1
PMCID: PMC1554464  PMID: 1516267

Abstract

L929 culture medium (a source of macrophage colony stimulating factor (M-CSF) or recombinant granulocyte-macrophage colony stimulating factor (rGM-CSF)-derived bone marrow macrophages treated with cisplatin or lipopolysaccharide (LPS) (10 micrograms/ml) were effective in the production of L-arginine-dependent reactive nitrogen intermediates (RNI) and generation of tumouricidal activity. The abilities of RNI secretion and related tumouricidal activity against P815 mastocytoma cells were compared. These parameters were found to be closely correlated in various experiments. RNI secretion and generation of bone marrow macrophage-mediated tumouricidal activity were significantly inhibited by L-N-monomethyl arginine (L-NMMA), a specific inhibitor of the L-arginine pathway, but L-NMMA did not inhibit macrophage-mediated killing of tumour necrosis factor (TNF)-sensitive Wehi cells, suggesting that activated macrophages exhibit at least two cytolytic mechanisms, one by L-arginine-dependent nitric oxide pathway and another by TNF-mediated killing. The present findings suggest that the mechanism of tumour cell killing by activated macrophages may differ, depending on the tumour cell type, and reactive nitrogen intermediates play a major role in cisplatin-mediated activation of bone marrow-derived macrophages.

Full text

PDF
502

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. O., Kao K. J., Farb R., Pizzo S. V. Effector mechanisms of cytolytically activated macrophages. II. Secretion of a cytolytic factor by activated macrophages and its relationship to secreted neutral proteases. J Immunol. 1980 Jan;124(1):293–300. [PubMed] [Google Scholar]
  2. Decker T., Lohmann-Matthes M. L., Gifford G. E. Cell-associated tumor necrosis factor (TNF) as a killing mechanism of activated cytotoxic macrophages. J Immunol. 1987 Feb 1;138(3):957–962. [PubMed] [Google Scholar]
  3. Ding A. H., Nathan C. F., Stuehr D. J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988 Oct 1;141(7):2407–2412. [PubMed] [Google Scholar]
  4. Falk L. A., Wahl L. M., Vogel S. N. Analysis of Ia antigen expression in macrophages derived from bone marrow cells cultured in granulocyte-macrophage colony-stimulating factor or macrophage colony-stimulating factor. J Immunol. 1988 Apr 15;140(8):2652–2660. [PubMed] [Google Scholar]
  5. Fidler I. J., Schroit A. J. Recognition and destruction of neoplastic cells by activated macrophages: discrimination of altered self. Biochim Biophys Acta. 1988 Nov 15;948(2):151–173. doi: 10.1016/0304-419x(88)90009-1. [DOI] [PubMed] [Google Scholar]
  6. Granger D. L., Taintor R. R., Cook J. L., Hibbs J. B., Jr Injury of neoplastic cells by murine macrophages leads to inhibition of mitochondrial respiration. J Clin Invest. 1980 Feb;65(2):357–370. doi: 10.1172/JCI109679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hibbs J. B., Jr, Taintor R. R., Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 1987 Jan 23;235(4787):473–476. doi: 10.1126/science.2432665. [DOI] [PubMed] [Google Scholar]
  8. Higuchi M., Higashi N., Taki H., Osawa T. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J Immunol. 1990 Feb 15;144(4):1425–1431. [PubMed] [Google Scholar]
  9. Hosoe S., Ogura T., Hayashi S., Komuta K., Ikeda T., Shirasaka T., Kawase I., Masuno T., Kishimoto S. Induction of tumoricidal macrophages from bone marrow cells of normal mice or mice bearing a colony-stimulating-factor-producing tumor. Cancer Immunol Immunother. 1989;28(2):116–122. doi: 10.1007/BF00199111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ichinose Y., Bakouche O., Tsao J. Y., Fidler I. J. Tumor necrosis factor and IL-1 associated with plasma membranes of activated human monocytes lyse monokine-sensitive but not monokine-resistant tumor cells whereas viable activated monocytes lyse both. J Immunol. 1988 Jul 15;141(2):512–518. [PubMed] [Google Scholar]
  11. Iyengar R., Stuehr D. J., Marletta M. A. Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6369–6373. doi: 10.1073/pnas.84.18.6369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Keller R. Cytostatic elimination of syngeneic rat tumor cells in vitro by nonspecifically activated macrophages. J Exp Med. 1973 Sep 1;138(3):625–644. doi: 10.1084/jem.138.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mace K. F., Ehrke M. J., Hori K., Maccubbin D. L., Mihich E. Role of tumor necrosis factor in macrophage activation and tumoricidal activity. Cancer Res. 1988 Oct 1;48(19):5427–5432. [PubMed] [Google Scholar]
  14. Marletta M. A., Yoon P. S., Iyengar R., Leaf C. D., Wishnok J. S. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry. 1988 Nov 29;27(24):8706–8711. doi: 10.1021/bi00424a003. [DOI] [PubMed] [Google Scholar]
  15. Metcalf D. The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors. Blood. 1986 Feb;67(2):257–267. [PubMed] [Google Scholar]
  16. Nathan C. F. Secretion of oxygen intermediates: role in effector functions of activated macrophages. Fed Proc. 1982 Apr;41(6):2206–2211. [PubMed] [Google Scholar]
  17. Palmer R. M., Moncada S. A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells. Biochem Biophys Res Commun. 1989 Jan 16;158(1):348–352. doi: 10.1016/s0006-291x(89)80219-0. [DOI] [PubMed] [Google Scholar]
  18. Palmer R. M., Rees D. D., Ashton D. S., Moncada S. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun. 1988 Jun 30;153(3):1251–1256. doi: 10.1016/s0006-291x(88)81362-7. [DOI] [PubMed] [Google Scholar]
  19. Sodhi A., Suresh A., Singh S. M. In vitro activation of rGM-CSF derived bone marrow macrophages by cisplatin and lipopolysaccharide. Immunol Cell Biol. 1991 Aug;69(Pt 4):235–241. doi: 10.1038/icb.1991.34. [DOI] [PubMed] [Google Scholar]
  20. Stuehr D. J., Gross S. S., Sakuma I., Levi R., Nathan C. F. Activated murine macrophages secrete a metabolite of arginine with the bioactivity of endothelium-derived relaxing factor and the chemical reactivity of nitric oxide. J Exp Med. 1989 Mar 1;169(3):1011–1020. doi: 10.1084/jem.169.3.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stuehr D. J., Marletta M. A. Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines, or interferon-gamma. J Immunol. 1987 Jul 15;139(2):518–525. [PubMed] [Google Scholar]
  22. Stuehr D. J., Marletta M. A. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7738–7742. doi: 10.1073/pnas.82.22.7738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stuehr D. J., Nathan C. F. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med. 1989 May 1;169(5):1543–1555. doi: 10.1084/jem.169.5.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Suresh A., Sodhi A. Production of interleukin-1 and tumor necrosis factor by bone marrow-derived macrophages: effect of cisplatin and lipopolysaccharide. Immunol Lett. 1991 Sep;30(1):93–100. doi: 10.1016/0165-2478(91)90095-r. [DOI] [PubMed] [Google Scholar]
  25. Suresh A., Sodhi A., Singh S. M., Basu S. In vitro activation of murine bone marrow-derived macrophages with cisplatin and mitomycin-C. Int J Immunopharmacol. 1991;13(2-3):189–195. doi: 10.1016/0192-0561(91)90098-r. [DOI] [PubMed] [Google Scholar]
  26. Unanue E. R., Allen P. M. The basis for the immunoregulatory role of macrophages and other accessory cells. Science. 1987 May 1;236(4801):551–557. doi: 10.1126/science.2437650. [DOI] [PubMed] [Google Scholar]
  27. Waheed A., Shadduck R. K. Purification and properties of L cell-derived colony-stimulating factor. J Lab Clin Med. 1979 Jul;94(1):180–193. [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES