Abstract
The effect of oral administration of THI, a compound present in ammonia caramel food colouring, was studied in spontaneous and induced murine diabetes mellitus. Continuous administration of THI at 400 ppm in drinking water reduced the prevalence of spontaneous diabetes in female NOD/Lt mice from 63% in untreated controls to 8% in treated animals. Since cyclophosphamide (CP) accelerates and intensifies diabetes in NOD mice, we also studied the effect of THI in this model. Diabetes incidence was reduced from 100% in mice given only CP to 13-14% in mice given THI either concurrently or from 14 days previously. Histologically, THI greatly reduced the severity of insulitis. As measured by flow cytometry, all THI-treated mice had a 60-80% reduction in splenic CD4+ and CD8+ T cells. THI-treated mice showed no untoward effects and specifically no weight loss, or pathological changes in their livers, kidneys or lungs. However, there was moderate atrophy of the thymus cortex. THI is a small imidazole-containing compound with structural similarity to histamine and urocanic acid, both known to have immunosuppressive properties. It is a widely used food additive with no known long-term toxic effects at low dosage. Thus, THI could be a useful immunosuppressive agent.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baxter A. G., Adams M. A., Mandel T. E. Comparison of high- and low-diabetes-incidence NOD mouse strains. Diabetes. 1989 Oct;38(10):1296–1300. doi: 10.2337/diab.38.10.1296. [DOI] [PubMed] [Google Scholar]
- Baxter A. G., Koulmanda M., Mandel T. E. High and low diabetes incidence nonobese diabetic (NOD) mice: origins and characterisation. Autoimmunity. 1991;9(1):61–67. doi: 10.3109/08916939108997125. [DOI] [PubMed] [Google Scholar]
- Beer D. J., Matloff S. M., Rocklin R. E. The influence of histamine on immune and inflammatory responses. Adv Immunol. 1984;35:209–268. doi: 10.1016/s0065-2776(08)60577-5. [DOI] [PubMed] [Google Scholar]
- Beer D. J., Rocklin R. E. Histamine modulation of lymphocyte biology: membrane receptors, signal transduction, and functions. Crit Rev Immunol. 1987;7(1):55–91. [PubMed] [Google Scholar]
- Charlton B., Bacelj A., Slattery R. M., Mandel T. E. Cyclophosphamide-induced diabetes in NOD/WEHI mice. Evidence for suppression in spontaneous autoimmune diabetes mellitus. Diabetes. 1989 Apr;38(4):441–447. doi: 10.2337/diab.38.4.441. [DOI] [PubMed] [Google Scholar]
- Evans J. G., Butterworth K. R., Gaunt I. F., Grasso P. Long-term toxicity study in the rat on a caramel produced by the 'half open-half closed pan' ammonia process. Food Cosmet Toxicol. 1977 Dec;15(6):523–531. doi: 10.1016/0015-6264(77)90066-9. [DOI] [PubMed] [Google Scholar]
- Gaunt I. F., Lloyd A. G., Grasso P., Gangolli S. D., Butterworth K. R. Short-term study in the rat on two caramels produced by variations of the "ammonia process". Food Cosmet Toxicol. 1977 Dec;15(6):509–521. doi: 10.1016/0015-6264(77)90065-7. [DOI] [PubMed] [Google Scholar]
- Gobin S. J., Legg R. F., Paine A. J., Phillips J. A. The effect of 2-acetyl-4-tetrahydroxybutylimidazole on lymphocyte subsets in peripheral blood of the rat. Int J Immunopharmacol. 1989;11(8):937–946. doi: 10.1016/0192-0561(89)90116-1. [DOI] [PubMed] [Google Scholar]
- Gobin S. J., Phillips J. A. Immunosuppressive effects of 2-acetyl-4-tetrahydroxybutyl imidazole (THI) in the rat. Clin Exp Immunol. 1991 Aug;85(2):335–340. doi: 10.1111/j.1365-2249.1991.tb05729.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harada M., Makino S. Promotion of spontaneous diabetes in non-obese diabetes-prone mice by cyclophosphamide. Diabetologia. 1984 Dec;27(6):604–606. doi: 10.1007/BF00276978. [DOI] [PubMed] [Google Scholar]
- Iscaro A., Mackay I. R., O'Brien C. Lymphopenic effects on mice of a component of ammonia caramel, 2-acetyl-4(5)-tetrahydroxybutylimidazole (THI). Immunol Cell Biol. 1988 Oct-Dec;66(Pt 5-6):395–402. doi: 10.1038/icb.1988.51. [DOI] [PubMed] [Google Scholar]
- Kamata K., Okubo M., Ishigamori E., Masaki Y., Uchida H., Watanabe K., Kashiwagi N. Immunosuppressive effect of bredinin on cell-mediated and humoral immune reactions in experimental animals. Transplantation. 1983 Feb;35(2):144–149. doi: 10.1097/00007890-198302000-00007. [DOI] [PubMed] [Google Scholar]
- Kamata K., Okubo M., Uchiyama T., Masaki Y., Kobayashi Y., Tanaka T. Effect of mizoribine on lupus nephropathy of New Zealand black/white F1 hybrid mice. Clin Immunol Immunopathol. 1984 Oct;33(1):31–38. doi: 10.1016/0090-1229(84)90290-3. [DOI] [PubMed] [Google Scholar]
- Makino S., Kunimoto K., Muraoka Y., Mizushima Y., Katagiri K., Tochino Y. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu. 1980 Jan;29(1):1–13. doi: 10.1538/expanim1978.29.1_1. [DOI] [PubMed] [Google Scholar]
- Norval M., Simpson T. J., Ross J. A. Urocanic acid and immunosuppression. Photochem Photobiol. 1989 Aug;50(2):267–275. doi: 10.1111/j.1751-1097.1989.tb04159.x. [DOI] [PubMed] [Google Scholar]
- Sinkeldam E. J., de Groot A. P., van den Berg H., Chappel C. I. The effect of pyridoxine on the number of lymphocytes in the blood of rats fed caramel colour (III). Food Chem Toxicol. 1988 Mar;26(3):195–203. doi: 10.1016/0278-6915(88)90119-6. [DOI] [PubMed] [Google Scholar]
- Tuomilehto J., Wolf E. Primary prevention of diabetes mellitus. Diabetes Care. 1987 Mar-Apr;10(2):238–248. doi: 10.2337/diacare.10.2.238. [DOI] [PubMed] [Google Scholar]
- Wassmuth R., Lernmark A. The genetics of susceptibility to diabetes. Clin Immunol Immunopathol. 1989 Dec;53(3):358–399. doi: 10.1016/0090-1229(89)90002-0. [DOI] [PubMed] [Google Scholar]
- Yasunami R., Bach J. F. Anti-suppressor effect of cyclophosphamide on the development of spontaneous diabetes in NOD mice. Eur J Immunol. 1988 Mar;18(3):481–484. doi: 10.1002/eji.1830180325. [DOI] [PubMed] [Google Scholar]