Abstract
Activation of certain adhesion molecules within vascular endothelium and the surrounding extravascular space is a critical event in the recruitment and targeting of an inflammatory response or autoimmune attack to a particular tissue site. We have recently demonstrated that the adhesion of lymphocytes to cultured retroocular fibroblasts obtained from patients with Graves' ophthalmopathy (GO) is mediated predominantly by the interaction of lymphocyte function-associated antigen-1 (LFA-1), expressed on lymphocytes, with intercellular adhesion molecule-1 (ICAM-1), expressed by these cells following exposure to interferon-gamma (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha), IL-1 alpha or purified thyroid-stimulating immunoglobulins. We now report the expression and localization in situ of several adhesion molecules, ICAM-1, endothelial leucocyte adhesion molecule-1 (ELAM-1), vascular cell adhesion molecule-1 (VCAM-1), and LFA-3 in retroocular tissues derived from patients with severe GO (n = 4) and normal individuals (n = 3). Serial cryostat sections of tissue specimens were processed for immunoperoxidase staining using various MoAbs against ICAM-1, ELAM-1, VCAM-1 and LFA-3. In addition, consecutive sections were stained with MoAbs against LFA-1, CD45RO (UCHL-1)DR-human leucocyte antigen (HLA-DR), CD11b/CD18 (Mac-1), and CD11c/CD18 (p150,95). In GO-retroocular tissues, strong immunoreactivity for ICAM-1 and LFA-3 was detected in blood vessels (> 90%), in perimysial fibroblasts surrounding extraocular muscle fibres, and in connective tissue distinct from extraocular muscle. No ICAM-1 or LFA-3 immunoreactivity was present in extraocular muscle cells themselves. ICAM-1 and LFA-3 immunoreactivity in normal tissues was minimal or absent both in connective and muscle tissues. Vascular endothelium was strongly positive for ELAM-1 and VCAM-1 in GO-retroocular tissues, while VCAM-1 immunoreactivity was minimal (< 5% of blood vessels) and ELAM-1 immunoreactivity was generally absent in normal retroocular tissue. LFA-1-expressing, activated mononuclear cells and memory T lymphocytes (CD3+/CD45RO+) were only detected in GO-retrocular tissues, and were mainly localized around blood vessels and in areas of ICAM-1-expressing connective and perimysial tissue. HLA-DR expression was restricted to GO-tissue specimens, with strong immunoreactivity detected in blood vessels, macrophages and connective tissue and perimysial fibroblasts. No HLA-DR was detectable in extraocular muscle cells. In conclusion, infiltration of the orbit in GO by mononuclear cells, and their targeting within the orbit, may depend upon the coordinate expression of certain adhesion and MHC molecules.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albelda S. M., Buck C. A. Integrins and other cell adhesion molecules. FASEB J. 1990 Aug;4(11):2868–2880. [PubMed] [Google Scholar]
- Albelda S. M. Endothelial and epithelial cell adhesion molecules. Am J Respir Cell Mol Biol. 1991 Mar;4(3):195–203. doi: 10.1165/ajrcmb/4.3.195. [DOI] [PubMed] [Google Scholar]
- Altmann D. M., Hogg N., Trowsdale J., Wilkinson D. Cotransfection of ICAM-1 and HLA-DR reconstitutes human antigen-presenting cell function in mouse L cells. Nature. 1989 Apr 6;338(6215):512–514. doi: 10.1038/338512a0. [DOI] [PubMed] [Google Scholar]
- Bahn R. S., Garrity J. A., Gorman C. A. Clinical review 13: Diagnosis and management of Graves' ophthalmopathy. J Clin Endocrinol Metab. 1990 Sep;71(3):559–563. doi: 10.1210/jcem-71-3-559. [DOI] [PubMed] [Google Scholar]
- Bahn R. S., Heufelder A. E. Retroocular fibroblasts: important effector cells in Graves' ophthalmopathy. Thyroid. 1992 Spring;2(1):89–94. doi: 10.1089/thy.1992.2.89. [DOI] [PubMed] [Google Scholar]
- Beauchamp J. R., Abraham D. J., Bou-Gharios G., Partridge T. A., Olsen I. Expression and function of heterotypic adhesion molecules during differentiation of human skeletal muscle in culture. Am J Pathol. 1992 Feb;140(2):387–401. [PMC free article] [PubMed] [Google Scholar]
- Buckle A. M., Hogg N. Human memory T cells express intercellular adhesion molecule-1 which can be increased by interleukin 2 and interferon-gamma. Eur J Immunol. 1990 Feb;20(2):337–341. doi: 10.1002/eji.1830200216. [DOI] [PubMed] [Google Scholar]
- Griffiths C. E., Voorhees J. J., Nickoloff B. J. Characterization of intercellular adhesion molecule-1 and HLA-DR expression in normal and inflamed skin: modulation by recombinant gamma interferon and tumor necrosis factor. J Am Acad Dermatol. 1989 Apr;20(4):617–629. doi: 10.1016/s0190-9622(89)70073-6. [DOI] [PubMed] [Google Scholar]
- Hale L. P., Martin M. E., McCollum D. E., Nunley J. A., Springer T. A., Singer K. H., Haynes B. F. Immunohistologic analysis of the distribution of cell adhesion molecules within the inflammatory synovial microenvironment. Arthritis Rheum. 1989 Jan;32(1):22–30. doi: 10.1002/anr.1780320105. [DOI] [PubMed] [Google Scholar]
- Heufelder A. E., Bahn R. S. Graves' immunoglobulins and cytokines stimulate the expression of intercellular adhesion molecule-1 (ICAM-1) in cultured Graves' orbital fibroblasts. Eur J Clin Invest. 1992 Aug;22(8):529–537. doi: 10.1111/j.1365-2362.1992.tb01501.x. [DOI] [PubMed] [Google Scholar]
- Heufelder A. E., Goellner J. R., Wenzel B. E., Bahn R. S. Immunohistochemical detection and localization of a 72-kilodalton heat shock protein in autoimmune thyroid disease. J Clin Endocrinol Metab. 1992 Apr;74(4):724–731. doi: 10.1210/jcem.74.4.1548334. [DOI] [PubMed] [Google Scholar]
- Heufelder A. E., Smith T. J., Gorman C. A., Bahn R. S. Increased induction of HLA-DR by interferon-gamma in cultured fibroblasts derived from patients with Graves' ophthalmopathy and pretibial dermopathy. J Clin Endocrinol Metab. 1991 Aug;73(2):307–313. doi: 10.1210/jcem-73-2-307. [DOI] [PubMed] [Google Scholar]
- Heufelder A. E., Wenzel B. E., Bahn R. S. Cell surface localization of a 72 kilodalton heat shock protein in retroocular fibroblasts from patients with Graves' ophthalmopathy. J Clin Endocrinol Metab. 1992 Apr;74(4):732–736. doi: 10.1210/jcem.74.4.1548335. [DOI] [PubMed] [Google Scholar]
- Heufelder A. E., Wenzel B. E., Gorman C. A., Bahn R. S. Detection, cellular localization, and modulation of heat shock proteins in cultured fibroblasts from patients with extrathyroidal manifestations of Graves' disease. J Clin Endocrinol Metab. 1991 Oct;73(4):739–745. doi: 10.1210/jcem-73-4-739. [DOI] [PubMed] [Google Scholar]
- Hsu S. M., Soban E. Color modification of diaminobenzidine (DAB) precipitation by metallic ions and its application for double immunohistochemistry. J Histochem Cytochem. 1982 Oct;30(10):1079–1082. doi: 10.1177/30.10.6182185. [DOI] [PubMed] [Google Scholar]
- Hufnagel T. J., Hickey W. F., Cobbs W. H., Jakobiec F. A., Iwamoto T., Eagle R. C. Immunohistochemical and ultrastructural studies on the exenterated orbital tissues of a patient with Graves' disease. Ophthalmology. 1984 Nov;91(11):1411–1419. doi: 10.1016/s0161-6420(84)34152-5. [DOI] [PubMed] [Google Scholar]
- Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
- Kovacs E. J. Fibrogenic cytokines: the role of immune mediators in the development of scar tissue. Immunol Today. 1991 Jan;12(1):17–23. doi: 10.1016/0167-5699(91)90107-5. [DOI] [PubMed] [Google Scholar]
- Mantegazza R., Hughes S. M., Mitchell D., Travis M., Blau H. M., Steinman L. Modulation of MHC class II antigen expression in human myoblasts after treatment with IFN-gamma. Neurology. 1991 Jul;41(7):1128–1132. doi: 10.1212/wnl.41.7.1128. [DOI] [PubMed] [Google Scholar]
- Mourad W., Geha R. S., Chatila T. Engagement of major histocompatibility complex class II molecules induces sustained, lymphocyte function-associated molecule 1-dependent cell adhesion. J Exp Med. 1990 Nov 1;172(5):1513–1516. doi: 10.1084/jem.172.5.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothlein R., Czajkowski M., O'Neill M. M., Marlin S. D., Mainolfi E., Merluzzi V. J. Induction of intercellular adhesion molecule 1 on primary and continuous cell lines by pro-inflammatory cytokines. Regulation by pharmacologic agents and neutralizing antibodies. J Immunol. 1988 Sep 1;141(5):1665–1669. [PubMed] [Google Scholar]
- Shimizu Y., Newman W., Tanaka Y., Shaw S. Lymphocyte interactions with endothelial cells. Immunol Today. 1992 Mar;13(3):106–112. doi: 10.1016/0167-5699(92)90151-V. [DOI] [PubMed] [Google Scholar]
- Shimizu Y., Shaw S., Graber N., Gopal T. V., Horgan K. J., Van Seventer G. A., Newman W. Activation-independent binding of human memory T cells to adhesion molecule ELAM-1. Nature. 1991 Feb 28;349(6312):799–802. doi: 10.1038/349799a0. [DOI] [PubMed] [Google Scholar]
- Shimizu Y., Shaw S. Lymphocyte interactions with extracellular matrix. FASEB J. 1991 Jun;5(9):2292–2299. doi: 10.1096/fasebj.5.9.1860621. [DOI] [PubMed] [Google Scholar]
- Smith T. J., Bahn R. S., Gorman C. A., Cheavens M. Stimulation of glycosaminoglycan accumulation by interferon gamma in cultured human retroocular fibroblasts. J Clin Endocrinol Metab. 1991 May;72(5):1169–1171. doi: 10.1210/jcem-72-5-1169. [DOI] [PubMed] [Google Scholar]
- Smith T. J., Bahn R. S., Gorman C. A. Connective tissue, glycosaminoglycans, and diseases of the thyroid. Endocr Rev. 1989 Aug;10(3):366–391. doi: 10.1210/edrv-10-3-366. [DOI] [PubMed] [Google Scholar]
- Sollberg S., Peltonen J., Uitto J., Jimenez S. A. Elevated expression of beta 1 and beta 2 integrins, intercellular adhesion molecule 1, and endothelial leukocyte adhesion molecule 1 in the skin of patients with systemic sclerosis of recent onset. Arthritis Rheum. 1992 Mar;35(3):290–298. doi: 10.1002/art.1780350307. [DOI] [PubMed] [Google Scholar]
- Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
- Tallstedt L., Norberg R. Immunohistochemical staining of normal and Graves' extraocular muscle. Invest Ophthalmol Vis Sci. 1988 Feb;29(2):175–184. [PubMed] [Google Scholar]
- Van Seventer G. A., Shimizu Y., Horgan K. J., Shaw S. The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells. J Immunol. 1990 Jun 15;144(12):4579–4586. [PubMed] [Google Scholar]
- Wawryk S. O., Novotny J. R., Wicks I. P., Wilkinson D., Maher D., Salvaris E., Welch K., Fecondo J., Boyd A. W. The role of the LFA-1/ICAM-1 interaction in human leukocyte homing and adhesion. Immunol Rev. 1989 Apr;108:135–161. doi: 10.1111/j.1600-065x.1989.tb00016.x. [DOI] [PubMed] [Google Scholar]
- Weetman A. P., Cohen S., Gatter K. C., Fells P., Shine B. Immunohistochemical analysis of the retrobulbar tissues in Graves' ophthalmopathy. Clin Exp Immunol. 1989 Feb;75(2):222–227. [PMC free article] [PubMed] [Google Scholar]
- Weetman A. P. Thyroid-associated eye disease: pathophysiology. Lancet. 1991 Jul 6;338(8758):25–28. doi: 10.1016/0140-6736(91)90013-f. [DOI] [PubMed] [Google Scholar]







