Abstract
The effects of niflumic acid, an inhibitor of calcium-activated chloride currents, were compared with the actions of the calcium channel blocker nifedipine on noradrenaline- and 5-hydroxytryptamine (5-HT)-induced pressor responses of the rat perfused isolated mesenteric vascular bed.
Bolus injections of noradrenaline (1 and 10 nmol) increased the perfusion pressure in a dose-dependent manner. Nifedipine (1 μM) inhibited the increase in pressure produced by 1 nmol noradrenaline by 31±5%. Niflumic acid (10 and 30 μM) also inhibited the noradrenaline-induced increase in perfusion pressure and 30 μM niflumic acid reduced the pressor response to 1 nmol noradrenaline by 34±6%.
The increases in perfusion elicited by 5-HT (0.3 and 3 nmol) were reduced by niflumic acid (10 and 30 μM) in a concentration-dependent manner and 30 μM niflumic acid inhibited responses to 0.3 and 3 nmol 5-HT by, respectively, 49±8% and 50±7%. Nifedipine (1 μM) decreased the pressor response to 3 nmol 5-HT by 44±9%.
In the presence of a combination of 30 μM niflumic acid and 1 μM nifedipine the inhibition of the pressor effects of noradrenaline (10 nmol) and 5-HT (3 nmol) was not significantly greater than with niflumic acid (30 μM) alone. Thus the effects of niflumic acid and nifedipine were not additive.
In Ca-free conditions the transient contractions induced by 5-HT (3 nmol) were not reduced by 30 μM niflumic acid, suggesting that this agent does not inhibit calcium release from the intracellular store or the binding of 5-HT to its receptor.
Niflumic acid 30 μM did not inhibit the pressor responses induced by KCl (20 and 60 μmol) which were markedly reduced by 1 μM nifedipine. In addition, 1 μM levcromakalim decreased pressor responses produced by 20 μmol KCl. These data suggest that niflumic acid does not block directly calcium channels or activate potassium channels.
It is concluded that niflumic acid selectively reduces a component of noradrenaline- and 5-HT-induced pressor responses by inhibiting a mechanism which leads to the opening of voltage-gated calcium channels. Our data suggest that the Ca2+-activated chloride conductance may play a pivotal role in the activation of voltage-gated calcium channels in agonist-induced constriction of resistance blood vessels.
Keywords: Niflumic acid, calcium-activated chloride current, vascular smooth muscle, contraction mechanism, voltage-dependent calcium channel, noradrenaline, 5-hydroxytryptamine
Full Text
The Full Text of this article is available as a PDF (338.0 KB).