Abstract
We have investigated the suppressive effects of rolipram, RP 73401 (piclamilast) and other structurally diverse inhibitors of cyclic AMP-specific phosphodiesterase 4 (PDE4) on interleukin (IL)-2 generation from Balb/c mouse splenocytes exposed to the superantigen, Staphylococcocal enterotoxin-A (Staph. A). The purpose was to determine whether their potencies are more closely correlated with inhibition of PDE4 from CTLL cells, against which rolipram displays weak potency (low-affinity PDE4), or displacement of [3H]-(±)-rolipram from its high-affinity binding site (HARBS) in mouse brain cytosol.
RP 73401 (IC50 0.46±0.07 nM, n=4) was a very potent inhibitor of Staph. A-induced IL-2 release from Balb/c mouse splenocytes, being >1100 fold more potent than (±)-rolipram (IC50 540±67 nM, n=3).
A close correlation (r=0.95) was observed between suppression of IL-2 release by PDE inhibitors and inhibition of PDE4. In contrast, little correlation (r=0.39) was observed between suppression of IL-2 release and their affinities for the high-affinity rolipram binding site (HARBS).
RP 73401 only inhibited partially (30–40%) Staph. A-induced incorporation of [3H]-thymidine into splenocyte DNA. The PDE3 inhibitor, siguazodan (10 μM), had little or no effect on IL-2 release or DNA synthesis. This concentration of siguazodan did not enhance the inhibitory action of RP 73401 on IL-2 release but potentiated its effect on DNA synthesis, increasing potency and efficacy.
Staph. A-induced DNA synthesis was only partially inhibited by anti-IL-2 neutralizing antibody, whereas dexamethazone (100 nM) and cyclosporine A (100 nM) completely blocked the response.
RP 73401 (IC50 6.3±1.9 nM, n=4) was 140 fold more potent than rolipram (IC50 900±300 nM, n=3) in inhibiting Staph. A-induced [3H]-thymidine incorporation into splenocyte DNA.
The results implicate a low-affinity form of PDE4 in the suppression of Staph. A-induced IL-2 release from murine splenocytes by PDE inhibitors. The data also indicate that mitogenic factors other than IL-2, whose elaboration or responses to which are regulated by PDE3 as well as PDE4, contribute to the superantigen-induced DNA synthesis.
Keywords: Cyclic AMP-phosphodiesterase, RP 73401, rolipram, interleukin-2, murine splenocytes, Staphylococcal enterotoxin A, DNA synthesis
Full Text
The Full Text of this article is available as a PDF (387.2 KB).