Abstract
Although extracellular adenosine 5′-triphosphate (ATP) is the natural ligand for the P2Z receptor of human lymphocytes it is less potent than 3′-O-(4-benzoylbenzoyl)-ATP (BzATP) in opening the associated ion channel, which conducts a range of permeants including Ba2+ and ethidium+. We have quantified the influx of ethidium+ into lymphocytes produced by BzATP, ATP, 2-methylthio-ATP (2MeSATP) and ATPγS, studied competition between ATP and BzATP and investigated the effects of KN-62, a new and potent inhibitor of the P2Z receptor.
BzATP and ATP stimulated ethidium+ influx with EC50 values of 15.4±1.4 μM (n=5) and 85.6±8.8 μM (n=5), respectively. The maximal response to ATP was only 69.8±1.9% of that for BzATP. Hill analysis gave nH of 3.17±0.24 (n=3) and 2.09±0.45 (n=4) for BzATP and ATP, suggesting greater positive cooperativity for BzATP than for ATP in opening the P2Z receptor-operated ion channel.
A rank order of agonist potency of BzATP>ATP=2MeSATP>ATPγS was observed for agonist-stimulated ethidium+ influx, while maximal influxes followed a rank order of BzATP>ATP>2MeSATP>ATPγS.
Preincubation with 30–50 μM oxidized ATP (ox-ATP), an irreversible P2Z inhibitor, reduced the maximal response but did not change the steepness of the Ba2+ influx-response curve produced by BzATP (nH 3.2 and 2.9 for 30 and 50 μM ox-ATP, respectively (n=2)).
ATP (300–1000 μM) added simultaneously with 30 μM BzATP (EC90) inhibited both ethidium+ and Ba2+ fluxes to a maximum of 30–40% relative to the values observed with BzATP alone. Moreover, ATP (300 μM) shifted the concentration-response curve to the right for BzATP-stimulated Ba2+ influx, confirming competition between ATP and BzATP.
KN-62, a new and powerful inhibitor of the lymphocyte P2Z receptor, showed less potency in antagonizing BzATP-mediated fluxes than ATP-induced fluxes when maximal concentrations of both agonists (BzATP, 50 μM; ATP, 500 μM) were used.
These data suggest that the natural ligand, ATP, is a partial agonist for the P2Z receptor while BzATP is a more efficacious agonist. Moreover the competitive studies show that only a single class of P2-receptor (P2Z class) is expressed on human leukaemic lymphocytes.
Keywords: P2Z receptor; BzATP; lymphocytes: human leukaemic; KN-62; extracellular ATP receptor; ethidium+ influx; cation channel, lymphocyte; Ba2+ influx; partial agonist
Full Text
The Full Text of this article is available as a PDF (378.0 KB).