Abstract
The vascular effect of insulin in the mesenteric resistance blood vessel and the role of calcitonin gene-related peptide (CGRP)-receptor in insulin-induced vascular responsiveness were investigated in rats.
The mesenteric vascular beds isolated from Wistar rats were perfused with Krebs solution, and perfusion pressure was measured with a pressure transducer. In preparations contracted by perfusion with Krebs solution containing methoxamine in the presence of guanethidine, the perfusion of insulin (from 0.1 to 3000 nM) caused a concentration-dependent decrease in perfusion pressure due to vasodilatation. The pD2 value and maximum relaxation (%) were 6.94±0.22 and 43.9±5.2, respectively.
This vasodilator response to insulin was unaffected by 100 nM propranolol (β-adrenoceptor antagonist) plus 100 nM atropine (muscarinic cholinoceptor antagonist), 100 μM L-NG-nitroarginine (nitric oxide synthase inhibitor), 1 μM ouabain (Na+-K+ ATPase inhibitor), or 1 μM glibenclamide (ATP sensitive K+-channel inhibitor).
In preparations without endothelium, perfusion of insulin produced a marked vasodilatation. The pD2 value and maximum relaxation (%) were 7.62±0.21 and 81.0±4.6, respectively, significantly greater than in preparations with intact endothelium.
The vasodilator responses to insulin in the preparations without endothelium were significantly inhibited by CGRP[8–37], a CGRP receptor antagonist, whereas pretreatment with capsaisin, a toxin for CGRP-containing nerves, did not affect insulin-induced vasodilatation.
These results suggest that insulin induces non-adrenergic, non-cholinergic and endothelium-independent vasodilatation, which is partially mediated by CGRP receptors.
Keywords: Insulin, vasorelaxation, mesenteric resistance blood vessel, calcitonin gene-related peptide (CGRP), CGRP receptors
Full Text
The Full Text of this article is available as a PDF (317.2 KB).