Abstract
Changes in respiratory variables, arterial blood pressure and heart rate were studied in awake rats after injection of the opioid peptide [Lys7]dermorphin and its main metabolites, [1-5]dermorphin and [1-4]dermorphin.
Fifteen minutes after injection, doses of [Lys7]dermorphin producing antinociception (i.c.v., 36–120 nmol; s.c., 0.12–4.7 μmol kg−1) significantly increased respiratory frequency and minute volume of rats breathing air or hypoxic inspirates. This respiratory stimulation was reversed to depression by the 5-HT receptor antagonist ritanserin (2 mg kg−1, s.c.), was blocked by naloxone (0.1 mg kg−1, s.c.), significantly reduced by the μ1 opioid receptor antagonist naloxonazine (10 mg kg−1, s.c., 24 h before) but unaffected by peripherally acting opioid antagonist naloxone methyl bromide (3 mg kg−1, s.c.). Forty five minutes after injection, doses of the peptide producing catalepsy (s.c., 8.3–14.2 μmol kg−1, i.c.v., 360 nmol) significantly reduced respiratory frequency and volume of rats breathing air and blocked the hypercapnic ventilator response of rats breathing from 4% to 10% CO2. I.c.v. administration of [1-5]dermorphin and [1-4]dermorphin (from 36 to 360 nmol) never stimulated respiration but significantly reduced basal and CO2-stimulated ventilation. Opioid respiratory depression was only antagonized by naloxone.
In awake rats, [Lys7]dermorphin (0.1–1 mg kg−1, s.c.) decreased blood pressure. This hypotensive response was abolished by naloxone, reduced by naloxone methyl bromide and unaffected by naloxonazine.
In conclusion, the present study indicates that analgesic doses of [Lys7]dermorphin stimulate respiration by activating central μ1 opioid receptors and this respiratory stimulation involves a forebrain 5-hydroxytryptaminergic excitatory pathway.
Keywords: [Lys7]dermorphin, opioids, awake rats, respiratory stimulation, respiratory depression, blood pressure
Full Text
The Full Text of this article is available as a PDF (474.5 KB).