Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1998 Nov;125(5):1065–1073. doi: 10.1038/sj.bjp.0702171

Functional response of the rat kidney to inhibition of nitric oxide synthesis: role of cytochrome P450-derived arachidonate metabolites

Adebayo O Oyekan 1,*, J C McGiff 1
PMCID: PMC1565677  PMID: 9846646

Abstract

  1. We tested the hypothesis that nitric oxide (NO) exerts a tonic inhibitory influence on cytochrome P450 (CYP450)-dependent metabolism of arachidonic acid (AA).

  2. Nω-nitro-L-Arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase (NOS), increased mean blood pressure (MBP), from 91±6 to 137±5 mmHg, renal vascular resistance (RVR), from 9.9±0.6 to 27.4±2.5 mmHg ml−1 min−1, and reduced renal blood flow (RBF), from 9.8±0.7 to 6.5±0.6 ml min−1) and GFR from 1.2±0.2 to 0.6±0.2 ml 100 g−1 min−1) accompanied by diuresis (UV, 1.7±0.3 to 4.3±0.8 μl 100 g−1 min−1), and natriuresis (UNaV, 0.36±0.04 to 1.25±0.032 μmol 100 g−1 min−1).

  3. 12, 12 dibromododec-enoic acid (DBDD), an inhibitor of ω hydroxylase, blunted L-NAME-induced changes in MBP, RVR, UV and UNaV by 63±8, 70±5, 45±8 and 42±9%, respectively, and fully reversed the reduction in GFR by L-NAME. Clotrimazole, an inhibitor of the epoxygenase pathway of CYP450-dependent AA metabolism, was without effect.

  4. BMS182874 (5-dimethylamino)-N-(3,4-dimethyl-5-isoxazolyl)-1-naphthalenesulfonamide), an endothelin (ET)A receptor antagonist, also blunted the increases in MBP and RVR and the diuresis/natriuresis elicited by L-NAME without affecting GFR.

  5. Indomethacin blunted L-NAME-induced increases in RVR, UV and UNaV. BMS180291 (1S-(1α,2α,3α.4α)]-2-[[3-[4-[(pentylamino)carbonyl]-2-oxazolyl] - 7 - oxabicyclo[2.2.1]hept - 2 -yl]methyl]benzenepropanoic acid), an endoperoxide receptor antagonist, attenuated the pressor and renal haemodynamic but not the renal tubular effects of L-NAME.

  6. In conclusion, the renal functional effects of the CYP450-derived mediator(s) expressed after inhibition of NOS with L-NAME were prevented by inhibiting either CYP450 ω hydroxylase or cyclo-oxygenase or by antagonizing either ETA or endoperoxide receptors. 20-hydroxyeicosatetraenoic acid (20-HETE) fulfils the salient properties of this mediator.

Keywords: Nitric oxide, 20-HETE, CYP450, renal function, cyclo-oxygenase, L-NAME

Full Text

The Full Text of this article is available as a PDF (424.6 KB).


Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES