Abstract
The linkage between xenobiotic exposures and autoimmune diseases remains to be clearly defined. However, recent studies have raised the possibility that both genetic and environmental factors act synergistically at several stages or checkpoints to influence disease pathogenesis in susceptible populations. These observations predict that individuals susceptible to spontaneous autoimmunity should be more susceptible following xenobiotic exposure by virtue of the presence of predisposing background genes. To test this possibility, mouse strains with differing genetic susceptibility to murine lupus were examined for acceleration of autoimmune features characteristic of spontaneous systemic autoimmune disease following exposure to the immunostimulatory metals nickel and mercury. Although NiCl(2) exposure did not exacerbate autoimmunity, HgCl(2) significantly accelerated systemic disease in a strain-dependent manner. Mercury-exposed (NZB X NZW)F1 mice had accelerated lymphoid hyperplasia, hypergammaglobulinemia, autoantibodies, and immune complex deposits. Mercury also exacerbated immunopathologic manifestations in MRL+/+ and MR -lpr mice. However, there was less disease acceleration in lpr mice compared with MRL+/+ mice, likely due to the fact that environmental factors are less critical for disease induction when there is strong genetic susceptibility. Non-major histocompatibility complex genes also contributed to mercury-exacerbated disease, as the nonautoimmune AKR mice, which are H-2 identical with the MRL, showed less immunopathology than either the MRL/lpr or MRL+/+ strains. This study demonstrates that genetic susceptibility to spontaneous systemic autoimmunity can be a predisposing factor for HgCl(2)-induced exacerbation of autoimmunity. Such genetic predisposition may have to be considered when assessing the immunotoxicity of xenobiotics. Additional comparative studies using autoimmune-prone and nonautoimmune mice strains with different genetic backgrounds will help determine the contribution that xenobiotic exposure makes in rendering sensitive populations susceptible to autoimmune diseases.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alnemri E. S., Livingston D. J., Nicholson D. W., Salvesen G., Thornberry N. A., Wong W. W., Yuan J. Human ICE/CED-3 protease nomenclature. Cell. 1996 Oct 18;87(2):171–171. doi: 10.1016/s0092-8674(00)81334-3. [DOI] [PubMed] [Google Scholar]
- Andrews B. S., Eisenberg R. A., Theofilopoulos A. N., Izui S., Wilson C. B., McConahey P. J., Murphy E. D., Roths J. B., Dixon F. J. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med. 1978 Nov 1;148(5):1198–1215. doi: 10.1084/jem.148.5.1198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ansel J. C., Mountz J., Steinberg A. D., DeFabo E., Green I. Effects of UV radiation on autoimmune strains of mice: increased mortality and accelerated autoimmunity in BXSB male mice. J Invest Dermatol. 1985 Sep;85(3):181–186. doi: 10.1111/1523-1747.ep12276652. [DOI] [PubMed] [Google Scholar]
- Barr R. D. The mercurial nephrotic syndrome. East Afr Med J. 1990 Jun;67(6):381–386. [PubMed] [Google Scholar]
- Bell S. A., Hobbs M. V., Rubin R. L. Isotype-restricted hyperimmunity in a murine model of the toxic oil syndrome. J Immunol. 1992 Jun 1;148(11):3369–3376. [PubMed] [Google Scholar]
- Bernstein D. I. Allergic reactions to workplace allergens. JAMA. 1997 Dec 10;278(22):1907–1913. [PubMed] [Google Scholar]
- Burlingame R. W., Boey M. L., Starkebaum G., Rubin R. L. The central role of chromatin in autoimmune responses to histones and DNA in systemic lupus erythematosus. J Clin Invest. 1994 Jul;94(1):184–192. doi: 10.1172/JCI117305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burlingame R. W., Rubin R. L., Balderas R. S., Theofilopoulos A. N. Genesis and evolution of antichromatin autoantibodies in murine lupus implicates T-dependent immunization with self antigen. J Clin Invest. 1993 Apr;91(4):1687–1696. doi: 10.1172/JCI116378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burlingame R. W., Rubin R. L. Subnucleosome structures as substrates in enzyme-linked immunosorbent assays. J Immunol Methods. 1990 Dec 5;134(2):187–199. doi: 10.1016/0022-1759(90)90380-e. [DOI] [PubMed] [Google Scholar]
- Carpenter D. F., Steinberg A. D., Schur P. H., Talal N. The pathogenesis of autoimmunity in New Zealand mice. II. Acceleration of glomerulonephritis by polyinosinic-polycytidylic acid. Lab Invest. 1970 Dec;23(6):628–634. [PubMed] [Google Scholar]
- Druet P., Pelletier L. Th2 and Th1 autoreactive anti-class II cell lines in the rat suppress or induce autoimmunity. J Autoimmun. 1996 Apr;9(2):221–226. doi: 10.1006/jaut.1996.0027. [DOI] [PubMed] [Google Scholar]
- Goebeler M., Roth J., Bröcker E. B., Sorg C., Schulze-Osthoff K. Activation of nuclear factor-kappa B and gene expression in human endothelial cells by the common haptens nickel and cobalt. J Immunol. 1995 Sep 1;155(5):2459–2467. [PubMed] [Google Scholar]
- Griem P., Wulferink M., Sachs B., González J. B., Gleichmann E. Allergic and autoimmune reactions to xenobiotics: how do they arise? Immunol Today. 1998 Mar;19(3):133–141. doi: 10.1016/s0167-5699(97)01219-x. [DOI] [PubMed] [Google Scholar]
- Hang L., Slack J. H., Amundson C., Izui S., Theofilopoulos A. N., Dixon F. J. Induction of murine autoimmune disease by chronic polyclonal B cell activation. J Exp Med. 1983 Mar 1;157(3):874–883. doi: 10.1084/jem.157.3.874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hultman P., Bell L. J., Eneström S., Pollard K. M. Murine susceptibility to mercury. I. Autoantibody profiles and systemic immune deposits in inbred, congenic, and intra-H-2 recombinant strains. Clin Immunol Immunopathol. 1992 Nov;65(2):98–109. doi: 10.1016/0090-1229(92)90212-7. [DOI] [PubMed] [Google Scholar]
- Hultman P., Bell L. J., Eneström S., Pollard K. M. Murine susceptibility to mercury. II. autoantibody profiles and renal immune deposits in hybrid, backcross, and H-2d congenic mice. Clin Immunol Immunopathol. 1993 Jul;68(1):9–20. doi: 10.1006/clin.1993.1088. [DOI] [PubMed] [Google Scholar]
- Hultman P., Turley S. J., Eneström S., Lindh U., Pollard K. M. Murine genotype influences the specificity, magnitude and persistence of murine mercury-induced autoimmunity. J Autoimmun. 1996 Apr;9(2):139–149. doi: 10.1006/jaut.1996.0017. [DOI] [PubMed] [Google Scholar]
- Kapsenberg M. L., Wierenga E. A., Bos J. D., Jansen H. M. Functional subsets of allergen-reactive human CD4+ T cells. Immunol Today. 1991 Nov;12(11):392–395. doi: 10.1016/0167-5699(91)90137-I. [DOI] [PubMed] [Google Scholar]
- Khan M. F., Kaphalia B. S., Ansari G. A. Time-dependent autoimmune response of dichloroacetyl chloride in female MRL +/+ mice. Immunopharmacol Immunotoxicol. 1997 May;19(2):265–277. doi: 10.3109/08923979709007662. [DOI] [PubMed] [Google Scholar]
- Kono D. H., Balomenos D., Pearson D. L., Park M. S., Hildebrandt B., Hultman P., Pollard K. M. The prototypic Th2 autoimmunity induced by mercury is dependent on IFN-gamma and not Th1/Th2 imbalance. J Immunol. 1998 Jul 1;161(1):234–240. [PubMed] [Google Scholar]
- Kono D. H., Burlingame R. W., Owens D. G., Kuramochi A., Balderas R. S., Balomenos D., Theofilopoulos A. N. Lupus susceptibility loci in New Zealand mice. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10168–10172. doi: 10.1073/pnas.91.21.10168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kono D. H., Theofilopoulos A. N. Genetic contributions to SLE. J Autoimmun. 1996 Aug;9(4):437–452. doi: 10.1006/jaut.1996.0061. [DOI] [PubMed] [Google Scholar]
- Kotzin B. L., Lafferty J. A., Portanova J. P., Rubin R. L., Tan E. M. Monoclonal anti-histone autoantibodies derived from murine models of lupus. J Immunol. 1984 Nov;133(5):2554–2559. [PubMed] [Google Scholar]
- Lewis R. E., Jr, Cruse J. M., Johnson W. W., Mohammad A. Histopathology and cell-mediated immune reactivity in halothane-associated lymphomagenesis and autoimmunity to BXSB/Mp and MRL/Mp mice. Exp Mol Pathol. 1982 Jun;36(3):378–395. doi: 10.1016/0014-4800(82)90067-3. [DOI] [PubMed] [Google Scholar]
- Ochel M., Vohr H. W., Pfeiffer C., Gleichmann E. IL-4 is required for the IgE and IgG1 increase and IgG1 autoantibody formation in mice treated with mercuric chloride. J Immunol. 1991 May 1;146(9):3006–3011. [PubMed] [Google Scholar]
- Pollard K. M., Hultman P. Effects of mercury on the immune system. Met Ions Biol Syst. 1997;34:421–440. [PubMed] [Google Scholar]
- Reimer G., Pollard K. M., Penning C. A., Ochs R. L., Lischwe M. A., Busch H., Tan E. M. Monoclonal autoantibody from a (New Zealand black x New Zealand white)F1 mouse and some human scleroderma sera target an Mr 34,000 nucleolar protein of the U3 RNP particle. Arthritis Rheum. 1987 Jul;30(7):793–800. doi: 10.1002/art.1780300709. [DOI] [PubMed] [Google Scholar]
- Rodgers K. E. Effects of oral administration of malathion on the course of disease in MRL-lpr mice. J Autoimmun. 1997 Aug;10(4):367–373. doi: 10.1006/jaut.1997.0145. [DOI] [PubMed] [Google Scholar]
- Rubin R. L., Bell S. A., Burlingame R. W. Autoantibodies associated with lupus induced by diverse drugs target a similar epitope in the (H2A-H2B)-DNA complex. J Clin Invest. 1992 Jul;90(1):165–173. doi: 10.1172/JCI115832. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeuchi K., Turley S. J., Tan E. M., Pollard K. M. Analysis of the autoantibody response to fibrillarin in human disease and murine models of autoimmunity. J Immunol. 1995 Jan 15;154(2):961–971. [PubMed] [Google Scholar]
- Tian L., Lawrence D. A. Metal-induced modulation of nitric oxide production in vitro by murine macrophages: lead, nickel, and cobalt utilize different mechanisms. Toxicol Appl Pharmacol. 1996 Dec;141(2):540–547. doi: 10.1006/taap.1996.0320. [DOI] [PubMed] [Google Scholar]
- Van Hoogstraten I. M., Boos C., Boden D., Von Blomberg M. E., Scheper R. J., Kraal G. Oral induction of tolerance to nickel sensitization in mice. J Invest Dermatol. 1993 Jul;101(1):26–31. doi: 10.1111/1523-1747.ep12358502. [DOI] [PubMed] [Google Scholar]
