Abstract
Systemic lupus erythematosus (SLE) is a multiphenotypic autoimmune disease. The hallmark of SLE is the production of anti-double-stranded DNA autoantibodies and the deposition of immune complexes in target tissues such as the kidney, skin, and brain. Additional phenotypic traits are the presence of arthritis, anemia, central nervous system involvement, and a variety of autoantibodies. Females of childbearing age are particularly at risk. Recent genetic analysis of murine SLE shows that susceptibility is under complex polygenic control. It is also apparent that environmental factors contribute to the induction and exacerbation of SLE. We describe here the genotypic and phenotypic characterization of a group of recombinant inbred strains of SLE-prone mice that were derived from NZB and NZW progenitors, the parental strains of the classic female F1 hybrid lupus model. Recombination and reassortment of these ancestral genomes resulted in the NZM (New Zealand mixed) strains with strain-specific patterns of renal disease penetrance and other autoimmune traits such as Coombs positive anemia and neurologic deficits. Multiple susceptibility loci of the ancestral strains demonstrate that SLE is inherited as a threshold trait. Because some of these loci co-localize with the susceptibility loci of the insulin-dependent diabetes of nonobese diabetic strain, it is apparent that there are disease-specific as well as autoimmunity-promoting genes. It is proposed that the NZM strains, particularly those with reduced disease penetrance or partial genotypes, provide an improved genetic model for assessment of the effects of environmental agents on SLE and autoimmunity.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams L. E., Hess E. V. Drug-related lupus. Incidence, mechanisms and clinical implications. Drug Saf. 1991 Nov-Dec;6(6):431–449. doi: 10.2165/00002018-199106060-00004. [DOI] [PubMed] [Google Scholar]
- Albert D. A. Health services research and systemic lupus erythematosus: a reciprocal relationship. Perspect Biol Med. 1998 Spring;41(3):327–340. doi: 10.1353/pbm.1998.0018. [DOI] [PubMed] [Google Scholar]
- Bailey D. W. Recombinant-inbred strains. An aid to finding identity, linkage, and function of histocompatibility and other genes. Transplantation. 1971 Mar;11(3):325–327. doi: 10.1097/00007890-197103000-00013. [DOI] [PubMed] [Google Scholar]
- Boumpas D. T., Austin H. A., 3rd, Fessler B. J., Balow J. E., Klippel J. H., Lockshin M. D. Systemic lupus erythematosus: emerging concepts. Part 1: Renal, neuropsychiatric, cardiovascular, pulmonary, and hematologic disease. Ann Intern Med. 1995 Jun 15;122(12):940–950. doi: 10.7326/0003-4819-122-12-199506150-00009. [DOI] [PubMed] [Google Scholar]
- Boumpas D. T., Fessler B. J., Austin H. A., 3rd, Balow J. E., Klippel J. H., Lockshin M. D. Systemic lupus erythematosus: emerging concepts. Part 2: Dermatologic and joint disease, the antiphospholipid antibody syndrome, pregnancy and hormonal therapy, morbidity and mortality, and pathogenesis. Ann Intern Med. 1995 Jul 1;123(1):42–53. doi: 10.7326/0003-4819-123-1-199507010-00007. [DOI] [PubMed] [Google Scholar]
- Drake C. G., Rozzo S. J., Hirschfeld H. F., Smarnworawong N. P., Palmer E., Kotzin B. L. Analysis of the New Zealand Black contribution to lupus-like renal disease. Multiple genes that operate in a threshold manner. J Immunol. 1995 Mar 1;154(5):2441–2447. [PubMed] [Google Scholar]
- Fujimura T., Hirose S., Jiang Y., Kodera S., Ohmuro H., Zhang D., Hamano Y., Ishida H., Furukawa S., Shirai T. Dissection of the effects of tumor necrosis factor-alpha and class II gene polymorphisms within the MHC on murine systemic lupus erythematosus (SLE). Int Immunol. 1998 Oct;10(10):1467–1472. doi: 10.1093/intimm/10.10.1467. [DOI] [PubMed] [Google Scholar]
- HELYER B. J., HOWIE J. B. Renal disease associated with positive lupus erythematosus tests in a cross-bred strain of mice. Nature. 1963 Jan 12;197:197–197. doi: 10.1038/197197a0. [DOI] [PubMed] [Google Scholar]
- Hagiwara E., Gourley M. F., Lee S., Klinman D. K. Disease severity in patients with systemic lupus erythematosus correlates with an increased ratio of interleukin-10:interferon-gamma-secreting cells in the peripheral blood. Arthritis Rheum. 1996 Mar;39(3):379–385. doi: 10.1002/art.1780390305. [DOI] [PubMed] [Google Scholar]
- Heo Y., Parsons P. J., Lawrence D. A. Lead differentially modifies cytokine production in vitro and in vivo. Toxicol Appl Pharmacol. 1996 May;138(1):149–157. doi: 10.1006/taap.1996.0108. [DOI] [PubMed] [Google Scholar]
- Jacob C. O. Studies on the role of tumor necrosis factor in murine and human autoimmunity. J Autoimmun. 1992 Apr;5 (Suppl A):133–143. doi: 10.1016/0896-8411(92)90028-o. [DOI] [PubMed] [Google Scholar]
- Kier A. B. Clinical neurology and brain histopathology in NZB/NZW F1 lupus mice. J Comp Pathol. 1990 Feb;102(2):165–177. doi: 10.1016/s0021-9975(08)80122-3. [DOI] [PubMed] [Google Scholar]
- Kishikawa H., Song R., Lawrence D. A. Interleukin-12 promotes enhanced resistance to Listeria monocytogenes infection of lead-exposed mice. Toxicol Appl Pharmacol. 1997 Dec;147(2):180–189. doi: 10.1006/taap.1997.8308. [DOI] [PubMed] [Google Scholar]
- Knight J. G., Adams D. D. Three genes for lupus nephritis in NZB x NZW mice. J Exp Med. 1978 Jun 1;147(6):1653–1660. doi: 10.1084/jem.147.6.1653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lanier B. G., McDuffie F. C., Holley K. E. Role of C5 in the nephritis of NZB-W mice. J Immunol. 1971 Mar;106(3):740–746. [PubMed] [Google Scholar]
- Lawrence D. A. Posited mechanisms of metal immunotoxicity. Hum Exp Toxicol. 1995 Jan;14(1):114–116. doi: 10.1177/096032719501400127. [DOI] [PubMed] [Google Scholar]
- Linker-Israeli M., Deans R. J., Wallace D. J., Prehn J., Ozeri-Chen T., Klinenberg J. R. Elevated levels of endogenous IL-6 in systemic lupus erythematosus. A putative role in pathogenesis. J Immunol. 1991 Jul 1;147(1):117–123. [PubMed] [Google Scholar]
- Mohan C., Alas E., Morel L., Yang P., Wakeland E. K. Genetic dissection of SLE pathogenesis. Sle1 on murine chromosome 1 leads to a selective loss of tolerance to H2A/H2B/DNA subnucleosomes. J Clin Invest. 1998 Mar 15;101(6):1362–1372. doi: 10.1172/JCI728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mohan C., Morel L., Yang P., Wakeland E. K. Accumulation of splenic B1a cells with potent antigen-presenting capability in NZM2410 lupus-prone mice. Arthritis Rheum. 1998 Sep;41(9):1652–1662. doi: 10.1002/1529-0131(199809)41:9<1652::AID-ART17>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
- Mohan C., Morel L., Yang P., Wakeland E. K. Genetic dissection of systemic lupus erythematosus pathogenesis: Sle2 on murine chromosome 4 leads to B cell hyperactivity. J Immunol. 1997 Jul 1;159(1):454–465. [PubMed] [Google Scholar]
- Mohan C., Shi Y., Laman J. D., Datta S. K. Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J Immunol. 1995 Feb 1;154(3):1470–1480. [PubMed] [Google Scholar]
- Morel L., Mohan C., Yu Y., Croker B. P., Tian N., Deng A., Wakeland E. K. Functional dissection of systemic lupus erythematosus using congenic mouse strains. J Immunol. 1997 Jun 15;158(12):6019–6028. [PubMed] [Google Scholar]
- Morel L., Rudofsky U. H., Longmate J. A., Schiffenbauer J., Wakeland E. K. Polygenic control of susceptibility to murine systemic lupus erythematosus. Immunity. 1994 Jun;1(3):219–229. doi: 10.1016/1074-7613(94)90100-7. [DOI] [PubMed] [Google Scholar]
- Morel L., Yu Y., Blenman K. R., Caldwell R. A., Wakeland E. K. Production of congenic mouse strains carrying genomic intervals containing SLE-susceptibility genes derived from the SLE-prone NZM2410 strain. Mamm Genome. 1996 May;7(5):335–339. doi: 10.1007/s003359900098. [DOI] [PubMed] [Google Scholar]
- Olsen C. T., Gabrielsen A. E. Early complement components in NZB/NZW mice. I. The first component. J Immunol. 1979 Jan;122(1):133–135. [PubMed] [Google Scholar]
- Pelton B. K., Hylton W., Denman A. M. Activation of IL-6 production by UV irradiation of blood mononuclear cells from patients with systemic lupus erythematosus. Clin Exp Immunol. 1992 Aug;89(2):251–254. doi: 10.1111/j.1365-2249.1992.tb06940.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reichlin M., Harley J. B., Lockshin M. D. Serologic studies of monozygotic twins with systemic lupus erythematosus. Arthritis Rheum. 1992 Apr;35(4):457–464. doi: 10.1002/art.1780350416. [DOI] [PubMed] [Google Scholar]
- Rudick R. A., Eskin T. A. Neuropathological features of a lupus-like disorder in autoimmune mice. Ann Neurol. 1983 Sep;14(3):325–332. doi: 10.1002/ana.410140311. [DOI] [PubMed] [Google Scholar]
- Rudofsky U. H., Dilwith R. L., Roths J. B., Lawrence D. A., Kelley V. E., Magro A. M. Differences in the occurrence of hypertension among (NZB X NZW)F1, MRL-lpr, and BXSB mice with lupus nephritis. Am J Pathol. 1984 Jul;116(1):107–114. [PMC free article] [PubMed] [Google Scholar]
- Rudofsky U. H., Evans B. D., Balaban S. L., Mottironi V. D., Gabrielsen A. E. Differences in expression of lupus nephritis in New Zealand mixed H-2z homozygous inbred strains of mice derived from New Zealand black and New Zealand white mice. Origins and initial characterization. Lab Invest. 1993 Apr;68(4):419–426. [PubMed] [Google Scholar]
- Sommer V. M., Rudofsky U. H., Gabrielsen A. E. Immune complexes in skin of NZB/NZW mice. Clin Exp Immunol. 1975 Dec;22(3):461–467. [PMC free article] [PubMed] [Google Scholar]
- Stuart R. A., Littlewood A. J., Maddison P. J., Hall N. D. Elevated serum interleukin-6 levels associated with active disease in systemic connective tissue disorders. Clin Exp Rheumatol. 1995 Jan-Feb;13(1):17–22. [PubMed] [Google Scholar]
- Tan E. M. Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv Immunol. 1989;44:93–151. doi: 10.1016/s0065-2776(08)60641-0. [DOI] [PubMed] [Google Scholar]
- Theofilopoulos A. N., Dixon F. J. Murine models of systemic lupus erythematosus. Adv Immunol. 1985;37:269–390. doi: 10.1016/s0065-2776(08)60342-9. [DOI] [PubMed] [Google Scholar]
- Vyse T. J., Kotzin B. L. Genetic susceptibility to systemic lupus erythematosus. Annu Rev Immunol. 1998;16:261–292. doi: 10.1146/annurev.immunol.16.1.261. [DOI] [PubMed] [Google Scholar]
- Vyse T. J., Todd J. A. Genetic analysis of autoimmune disease. Cell. 1996 May 3;85(3):311–318. doi: 10.1016/s0092-8674(00)81110-1. [DOI] [PubMed] [Google Scholar]
- Wakeland E. K., Morel L., Mohan C., Yui M. Genetic dissection of lupus nephritis in murine models of SLE. J Clin Immunol. 1997 Jul;17(4):272–281. doi: 10.1023/a:1027370514198. [DOI] [PubMed] [Google Scholar]
- Walport M. J., Davies K. A., Botto M. C1q and systemic lupus erythematosus. Immunobiology. 1998 Aug;199(2):265–285. doi: 10.1016/S0171-2985(98)80032-6. [DOI] [PubMed] [Google Scholar]
- Warner G. L., Lawrence D. A. Cell surface and cell cycle analysis of metal-induced murine T cell proliferation. Eur J Immunol. 1986 Nov;16(11):1337–1342. doi: 10.1002/eji.1830161105. [DOI] [PubMed] [Google Scholar]
- Warner G. L., Lawrence D. A. Stimulation of murine lymphocyte responses by cations. Cell Immunol. 1986 Sep;101(2):425–439. doi: 10.1016/0008-8749(86)90155-3. [DOI] [PubMed] [Google Scholar]