Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1999 May;107(5):329–337. doi: 10.1289/ehp.99107329

An integrated assessment framework for climate change and infectious diseases.

N Y Chan 1, K L Ebi 1, F Smith 1, T F Wilson 1, A E Smith 1
PMCID: PMC1566428  PMID: 10210687

Abstract

Many potential human health effects have been hypothesized to result either directly or indirectly from global climate change. Changes in the prevalence and spread of infectious diseases are some of the most widely cited potential effects of climate change, and could have significant consequences for human health as well as economic and societal impacts. These changes in disease incidence would be mediated through biologic, ecologic, sociologic, and epidemiologic processes that interact with each other and which may themselves be influenced by climate change. Although hypothesized infectious disease effects have been widely discussed, there have not yet been thorough quantitative studies addressing the many processes at work. In part this is because of the complexity of the many indirect and feedback interactions or mechanisms that bear on all aspects of the climate issue. It also results from the difficulty of including the multitude of always-changing determinants of these diseases. This paper proposes a framework for an integrated assessment of the impacts of climate change on infectious diseases. The framework allows identification of potentially important indirect interactions or mechanisms, identification of important research gaps, and a means of integrating targeted research from a variety of disciplines into an enhanced understanding of the whole system.

Full text

PDF
329

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bouma M. J., Sondorp H. E., van der Kaay H. J. Climate change and periodic epidemic malaria. Lancet. 1994 Jun 4;343(8910):1440–1440. doi: 10.1016/s0140-6736(94)92569-0. [DOI] [PubMed] [Google Scholar]
  2. Bouma M. J., Sondorp H. E., van der Kaay H. J. Health and climate change. Lancet. 1994 Jan 29;343(8892):302–302. [PubMed] [Google Scholar]
  3. Brinkmann U. K. Economic development and tropical disease. Ann N Y Acad Sci. 1994 Dec 15;740:303–311. doi: 10.1111/j.1749-6632.1994.tb19882.x. [DOI] [PubMed] [Google Scholar]
  4. Cheesbrough J. S., Morse A. P., Green S. D. Meningococcal meningitis and carriage in western Zaire: a hypoendemic zone related to climate? Epidemiol Infect. 1995 Feb;114(1):75–92. doi: 10.1017/s0950268800051931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen L. C. New diseases. The human factor. Ann N Y Acad Sci. 1994 Dec 15;740:319–324. doi: 10.1111/j.1749-6632.1994.tb19884.x. [DOI] [PubMed] [Google Scholar]
  6. Coluzzi M. Malaria and the Afrotropical ecosystems: impact of man-made environmental changes. Parassitologia. 1994 Aug;36(1-2):223–227. [PubMed] [Google Scholar]
  7. Colwell R. R., Huq A. Environmental reservoir of Vibrio cholerae. The causative agent of cholera. Ann N Y Acad Sci. 1994 Dec 15;740:44–54. doi: 10.1111/j.1749-6632.1994.tb19852.x. [DOI] [PubMed] [Google Scholar]
  8. Cook G. C. Effect of global warming on the distribution of parasitic and other infectious diseases: a review. J R Soc Med. 1992 Nov;85(11):688–691. doi: 10.1177/014107689208501111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Curto de Casas S. I., Carcavallo R. U. Climate change and vector-borne diseases distribution. Soc Sci Med. 1995 Jun;40(11):1437–1440. doi: 10.1016/0277-9536(95)00040-e. [DOI] [PubMed] [Google Scholar]
  10. Dobson A., Carper R. Biodiversity. Lancet. 1993 Oct 30;342(8879):1096–1099. doi: 10.1016/0140-6736(93)92069-6. [DOI] [PubMed] [Google Scholar]
  11. Epstein P. R. Emerging diseases and ecosystem instability: new threats to public health. Am J Public Health. 1995 Feb;85(2):168–172. doi: 10.2105/ajph.85.2.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Epstein P. R. Framework for an integrated assessment of health, climate change, and ecosystem vulnerability. Ann N Y Acad Sci. 1994 Dec 15;740:423–435. doi: 10.1111/j.1749-6632.1994.tb19903.x. [DOI] [PubMed] [Google Scholar]
  13. Focks D. A., Daniels E., Haile D. G., Keesling J. E. A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg. 1995 Nov;53(5):489–506. doi: 10.4269/ajtmh.1995.53.489. [DOI] [PubMed] [Google Scholar]
  14. Focks D. A., Haile D. G., Daniels E., Mount G. A. Dynamic life table model for Aedes aegypti (diptera: Culicidae): simulation results and validation. J Med Entomol. 1993 Nov;30(6):1018–1028. doi: 10.1093/jmedent/30.6.1018. [DOI] [PubMed] [Google Scholar]
  15. Gubler D. J., Clark G. G. Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg Infect Dis. 1995 Apr-Jun;1(2):55–57. doi: 10.3201/eid0102.952004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Herrera-Basto E., Prevots D. R., Zarate M. L., Silva J. L., Sepulveda-Amor J. First reported outbreak of classical dengue fever at 1,700 meters above sea level in Guerrero State, Mexico, June 1988. Am J Trop Med Hyg. 1992 Jun;46(6):649–653. doi: 10.4269/ajtmh.1992.46.649. [DOI] [PubMed] [Google Scholar]
  17. Huq A., West P. A., Small E. B., Huq M. I., Colwell R. R. Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar 01 associated with live copepods in laboratory microcosms. Appl Environ Microbiol. 1984 Aug;48(2):420–424. doi: 10.1128/aem.48.2.420-424.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jackson E. K. Climate change and global infectious disease threats. Med J Aust. 1995 Dec 4;163(11-12):570–574. doi: 10.5694/j.1326-5377.1995.tb124754.x. [DOI] [PubMed] [Google Scholar]
  19. Jetten T. H., Focks D. A. Potential changes in the distribution of dengue transmission under climate warming. Am J Trop Med Hyg. 1997 Sep;57(3):285–297. doi: 10.4269/ajtmh.1997.57.285. [DOI] [PubMed] [Google Scholar]
  20. Jetten T. H., Martens W. J., Takken W. Model stimulations to estimate malaria risk under climate change. J Med Entomol. 1996 May;33(3):361–371. doi: 10.1093/jmedent/33.3.361. [DOI] [PubMed] [Google Scholar]
  21. Johansen A. A simple model of recurrent epidemics. J Theor Biol. 1996 Jan 7;178(1):45–51. doi: 10.1006/jtbi.1996.0005. [DOI] [PubMed] [Google Scholar]
  22. Komar N., Spielman A. Emergence of eastern encephalitis in Massachusetts. Ann N Y Acad Sci. 1994 Dec 15;740:157–168. doi: 10.1111/j.1749-6632.1994.tb19866.x. [DOI] [PubMed] [Google Scholar]
  23. Koopman J. S., Prevots D. R., Vaca Marin M. A., Gomez Dantes H., Zarate Aquino M. L., Longini I. M., Jr, Sepulveda Amor J. Determinants and predictors of dengue infection in Mexico. Am J Epidemiol. 1991 Jun 1;133(11):1168–1178. doi: 10.1093/oxfordjournals.aje.a115829. [DOI] [PubMed] [Google Scholar]
  24. Lindsay S. W., Birley M. H. Climate change and malaria transmission. Ann Trop Med Parasitol. 1996 Dec;90(6):573–588. doi: 10.1080/00034983.1996.11813087. [DOI] [PubMed] [Google Scholar]
  25. Lindsay S. W., Martens W. J. Malaria in the African highlands: past, present and future. Bull World Health Organ. 1998;76(1):33–45. [PMC free article] [PubMed] [Google Scholar]
  26. Lindsay S. W., Parson L., Thomas C. J. Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data. Proc Biol Sci. 1998 May 22;265(1399):847–854. doi: 10.1098/rspb.1998.0369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Loevinsohn M. E. Climatic warming and increased malaria incidence in Rwanda. Lancet. 1994 Mar 19;343(8899):714–718. doi: 10.1016/s0140-6736(94)91586-5. [DOI] [PubMed] [Google Scholar]
  28. Longini I. M., Jr, Fine P. E., Thacker S. B. Predicting the global spread of new infectious agents. Am J Epidemiol. 1986 Mar;123(3):383–391. doi: 10.1093/oxfordjournals.aje.a114253. [DOI] [PubMed] [Google Scholar]
  29. Martens W. J. Climate change and malaria: exploring the risks. Med War. 1995 Oct-Dec;11(4):202–213. doi: 10.1080/07488009508409240. [DOI] [PubMed] [Google Scholar]
  30. Martens W. J., Niessen L. W., Rotmans J., Jetten T. H., McMichael A. J. Potential impact of global climate change on malaria risk. Environ Health Perspect. 1995 May;103(5):458–464. doi: 10.1289/ehp.95103458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Morse S. S. Hantaviruses and the hantavirus outbreak in the United States. A case study in disease emergence. Ann N Y Acad Sci. 1994 Dec 15;740:199–207. doi: 10.1111/j.1749-6632.1994.tb19870.x. [DOI] [PubMed] [Google Scholar]
  32. Newton E. A., Reiter P. A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics. Am J Trop Med Hyg. 1992 Dec;47(6):709–720. doi: 10.4269/ajtmh.1992.47.709. [DOI] [PubMed] [Google Scholar]
  33. Nicholls N. A method for predicting Murray Valley encephalitis in southeast Australia using the Southern Oscillation. Aust J Exp Biol Med Sci. 1986 Dec;64(Pt 6):587–594. doi: 10.1038/icb.1986.62. [DOI] [PubMed] [Google Scholar]
  34. Olson K. E., Higgs S., Gaines P. J., Powers A. M., Davis B. S., Kamrud K. I., Carlson J. O., Blair C. D., Beaty B. J. Genetically engineered resistance to dengue-2 virus transmission in mosquitoes. Science. 1996 May 10;272(5263):884–886. doi: 10.1126/science.272.5263.884. [DOI] [PubMed] [Google Scholar]
  35. Patz J. A., Epstein P. R., Burke T. A., Balbus J. M. Global climate change and emerging infectious diseases. JAMA. 1996 Jan 17;275(3):217–223. [PubMed] [Google Scholar]
  36. Patz J. A., Martens W. J., Focks D. A., Jetten T. H. Dengue fever epidemic potential as projected by general circulation models of global climate change. Environ Health Perspect. 1998 Mar;106(3):147–153. doi: 10.1289/ehp.98106147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Patz J. A., Strzepek K., Lele S., Hedden M., Greene S., Noden B., Hay S. I., Kalkstein L., Beier J. C. Predicting key malaria transmission factors, biting and entomological inoculation rates, using modelled soil moisture in Kenya. Trop Med Int Health. 1998 Oct;3(10):818–827. doi: 10.1046/j.1365-3156.1998.00309.x. [DOI] [PubMed] [Google Scholar]
  38. Reeves W. C., Hardy J. L., Reisen W. K., Milby M. M. Potential effect of global warming on mosquito-borne arboviruses. J Med Entomol. 1994 May;31(3):323–332. doi: 10.1093/jmedent/31.3.323. [DOI] [PubMed] [Google Scholar]
  39. Rogers D. J., Packer M. J. Vector-borne diseases, models, and global change. Lancet. 1993 Nov 20;342(8882):1282–1284. doi: 10.1016/0140-6736(93)92367-3. [DOI] [PubMed] [Google Scholar]
  40. Rogers D. J., Randolph S. E. Distribution of tsetse and ticks in Africa: past, present and future. Parasitol Today. 1993 Jul;9(7):266–271. doi: 10.1016/0169-4758(93)90074-p. [DOI] [PubMed] [Google Scholar]
  41. Sattenspiel L., Dietz K. A structured epidemic model incorporating geographic mobility among regions. Math Biosci. 1995 Jul-Aug;128(1-2):71–91. doi: 10.1016/0025-5564(94)00068-b. [DOI] [PubMed] [Google Scholar]
  42. Service M. W. Rice, a challenge to health. Parasitol Today. 1989 May;5(5):162–165. doi: 10.1016/0169-4758(89)90083-5. [DOI] [PubMed] [Google Scholar]
  43. Shope R. Global climate change and infectious diseases. Environ Health Perspect. 1991 Dec;96:171–174. doi: 10.1289/ehp.9196171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Spielman A. The emergence of Lyme disease and human babesiosis in a changing environment. Ann N Y Acad Sci. 1994 Dec 15;740:146–156. doi: 10.1111/j.1749-6632.1994.tb19865.x. [DOI] [PubMed] [Google Scholar]
  45. Sutherst R. W. Arthropods as disease vectors in a changing environment. Ciba Found Symp. 1993;175:124–145. doi: 10.1002/9780470514436.ch8. [DOI] [PubMed] [Google Scholar]
  46. Tester P. A. Harmful marine phytoplankton and shellfish toxicity. Potential consequences of climate change. Ann N Y Acad Sci. 1994 Dec 15;740:69–76. doi: 10.1111/j.1749-6632.1994.tb19854.x. [DOI] [PubMed] [Google Scholar]
  47. Tong S., Bi P., Parton K., Hobbs J., McMichael A. J. Climate variability and transmission of epidemic polyarthritis. Lancet. 1998 Apr 11;351(9109):1100–1100. doi: 10.1016/S0140-6736(05)79379-X. [DOI] [PubMed] [Google Scholar]
  48. Trape J. F., Godeluck B., Diatta G., Rogier C., Legros F., Albergel J., Pepin Y., Duplantier J. M. The spread of tick-borne borreliosis in West Africa and its relationship to sub-Saharan drought. Am J Trop Med Hyg. 1996 Mar;54(3):289–293. doi: 10.4269/ajtmh.1996.54.289. [DOI] [PubMed] [Google Scholar]
  49. Ward M. A., Burgess N. R. Aedes albopictus--a new disease vector for Europe? J R Army Med Corps. 1993 Oct;139(3):109–111. doi: 10.1136/jramc-139-03-07. [DOI] [PubMed] [Google Scholar]
  50. Watts D. M., Burke D. S., Harrison B. A., Whitmire R. E., Nisalak A. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg. 1987 Jan;36(1):143–152. doi: 10.4269/ajtmh.1987.36.143. [DOI] [PubMed] [Google Scholar]
  51. Wilson M. E. Travel and the emergence of infectious diseases. Emerg Infect Dis. 1995 Apr-Jun;1(2):39–46. doi: 10.3201/eid0102.950201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wilson M. L. Rift Valley fever virus ecology and the epidemiology of disease emergence. Ann N Y Acad Sci. 1994 Dec 15;740:169–180. doi: 10.1111/j.1749-6632.1994.tb19867.x. [DOI] [PubMed] [Google Scholar]
  53. van Herwaarden O. A., Grasman J. Stochastic epidemics: major outbreaks and the duration of the endemic period. J Math Biol. 1995;33(6):581–601. doi: 10.1007/BF00298644. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES