Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1999 Aug;107(8):657–662. doi: 10.1289/ehp.99107657

Effects of weight loss and exercise on the distribution of lead and essential trace elements in rats with prior lead exposure.

S Han 1, W Li 1, U Jamil 1, K Dargan 1, M Orefice 1, F W Kemp 1, J D Bogden 1
PMCID: PMC1566481  PMID: 10417364

Abstract

We studied the effects of weight loss and non-weight-bearing exercise (swimming) on blood and organ lead and essential metal concentrations in rats with prior lead exposure. Nine-week-old female Sprague-Dawley rats (n = 37) received lead acetate in their drinking water for 2 weeks, followed by a 4-day latency period without lead exposure. Rats were then randomly assigned to one of six treatment groups: weight maintenance with ad libitum feeding, moderate weight loss with 20% food restriction, and substantial weight loss with 40% food restriction, either with or without swimming. Blood lead concentrations were measured weekly. The rats were euthanized after a 4-week period of food restriction, and the brain, liver, kidneys, quadriceps muscle, lumbar spinal column bones, and femur were harvested for analysis for lead, calcium, copper, iron, magnesium, and zinc using atomic absorption spectrophotometry. Both swimming and nonswimming rats fed restricted diets had consistently higher blood lead concentrations than the ad libitum controls. Rats in the substantial weight loss group had higher organ lead concentrations than rats in the weight maintenance group. Rats in the moderate weight loss group had intermediate values. There were no significant differences in blood and organ lead concentrations between the swimming and nonswimming groups. Organ iron concentrations increased with weight loss, but those of the other metals studied did not. Weight loss also increased hematocrits and decreased bone density of the nonswimming rats. The response of lead stores to weight loss was similar to that of iron stores because both were conserved during food restriction in contrast to decreased stores of the other metals studied. It is possible that weight loss, especially rapid weight loss, could result in lead toxicity in people with a history of prior excessive lead exposure.

Full text

PDF
657

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer K. D., Griminger P. Long-term effects of activity and of calcium and phosphorus intake on bones and kidneys of female rats. J Nutr. 1983 Oct;113(10):2011–2021. doi: 10.1093/jn/113.10.2011. [DOI] [PubMed] [Google Scholar]
  2. Berlin K., Gerhardsson L., Börjesson J., Lindh E., Lundström N., Schütz A., Skerfving S., Edling C. Lead intoxication caused by skeletal disease. Scand J Work Environ Health. 1995 Aug;21(4):296–300. doi: 10.5271/sjweh.42. [DOI] [PubMed] [Google Scholar]
  3. Bogden J. D., Kemp F. W., Han S., Murphy M., Fraiman M., Czerniach D., Flynn C. J., Banua M. L., Scimone A., Castrovilly L. Dietary calcium and lead interact to modify maternal blood pressure, erythropoiesis, and fetal and neonatal growth in rats during pregnancy and lactation. J Nutr. 1995 Apr;125(4):990–1002. doi: 10.1093/jn/125.4.990. [DOI] [PubMed] [Google Scholar]
  4. Chandra R. K. Golan memorial lecture. Nutritional regulation of immunity and infection: from epidemiology to phenomenology to clinical practice. J Pediatr Gastroenterol Nutr. 1986 Nov-Dec;5(6):844–852. doi: 10.1097/00005176-198611000-00004. [DOI] [PubMed] [Google Scholar]
  5. Compston J. E., Laskey M. A., Croucher P. I., Coxon A., Kreitzman S. Effect of diet-induced weight loss on total body bone mass. Clin Sci (Lond) 1992 Apr;82(4):429–432. doi: 10.1042/cs0820429. [DOI] [PubMed] [Google Scholar]
  6. Diehr P., Bild D. E., Harris T. B., Duxbury A., Siscovick D., Rossi M. Body mass index and mortality in nonsmoking older adults: the Cardiovascular Health Study. Am J Public Health. 1998 Apr;88(4):623–629. doi: 10.2105/ajph.88.4.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Egle P. M., Shelton K. R. Chronic lead intoxication causes a brain-specific nuclear protein to accumulate in the nuclei of cells lining kidney tubules. J Biol Chem. 1986 Feb 15;261(5):2294–2298. [PubMed] [Google Scholar]
  8. Furugouri K. Effect of prolonged fasting on iron stores and blood constituents in young swine. J Anim Sci. 1973 Sep;37(3):697–700. doi: 10.2527/jas1973.373697x. [DOI] [PubMed] [Google Scholar]
  9. Goering P. L. Lead-protein interactions as a basis for lead toxicity. Neurotoxicology. 1993 Summer-Fall;14(2-3):45–60. [PubMed] [Google Scholar]
  10. Grimm R. H., Jr, Cohen J. D., Smith W. M., Falvo-Gerard L., Neaton J. D. Hypertension management in the Multiple Risk Factor Intervention Trial (MRFIT). Six-year intervention results for men in special intervention and usual care groups. Arch Intern Med. 1985 Jul;145(7):1191–1199. [PubMed] [Google Scholar]
  11. Gulson B. L., Mahaffey K. R., Jameson C. W., Mizon K. J., Korsch M. J., Cameron M. A., Eisman J. A. Mobilization of lead from the skeleton during the postnatal period is larger than during pregnancy. J Lab Clin Med. 1998 Apr;131(4):324–329. doi: 10.1016/s0022-2143(98)90182-2. [DOI] [PubMed] [Google Scholar]
  12. Hamer D. H. Metallothionein. Annu Rev Biochem. 1986;55:913–951. doi: 10.1146/annurev.bi.55.070186.004405. [DOI] [PubMed] [Google Scholar]
  13. Han S., Qiao X., Kemp F. W., Bogden J. D. Lead exposure at an early age substantially increases lead retention in the rat. Environ Health Perspect. 1997 Apr;105(4):412–417. doi: 10.1289/ehp.97105412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Han S., Qiao X., Simpson S., Ameri P., Kemp F. W., Bogden J. D. Weight loss alters organ concentrations and contents of lead and some essential divalent metals in rats previously exposed to lead. J Nutr. 1996 Jan;126(1):317–323. doi: 10.1093/jn/126.1.317. [DOI] [PubMed] [Google Scholar]
  15. Hyldstrup L., Andersen T., McNair P., Breum L., Transbøl I. Bone metabolism in obesity: changes related to severe overweight and dietary weight reduction. Acta Endocrinol (Copenh) 1993 Nov;129(5):393–398. doi: 10.1530/acta.0.1290393. [DOI] [PubMed] [Google Scholar]
  16. Ikebuchi H., Teshima R., Suzuki K., Terao T., Yamane Y. Simultaneous induction of Pb-metallothionein-like protein and Zn-thionein in the liver of rats given lead acetate. Biochem J. 1986 Jan 15;233(2):541–546. doi: 10.1042/bj2330541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Katzel L. I., Coon P. J., Dengel J., Goldberg A. P. Effects of an American Heart Association step I diet and weight loss on lipoprotein lipid levels in obese men with silent myocardial ischemia and reduced high-density lipoprotein cholesterol. Metabolism. 1995 Mar;44(3):307–314. doi: 10.1016/0026-0495(95)90159-0. [DOI] [PubMed] [Google Scholar]
  18. Kelley D. S., Daudu P. A., Branch L. B., Johnson H. L., Taylor P. C., Mackey B. Energy restriction decreases number of circulating natural killer cells and serum levels of immunoglobulins in overweight women. Eur J Clin Nutr. 1994 Jan;48(1):9–18. [PubMed] [Google Scholar]
  19. Kiriike N., Iketani T., Nakanishi S., Nagata T., Inoue K., Okuno M., Ochi H., Kawakita Y. Reduced bone density and major hormones regulating calcium metabolism in anorexia nervosa. Acta Psychiatr Scand. 1992 Nov;86(5):358–363. doi: 10.1111/j.1600-0447.1992.tb03280.x. [DOI] [PubMed] [Google Scholar]
  20. Laughlin M. H., Mohrman S. J., Armstrong R. B. Muscular blood flow distribution patterns in the hindlimb of swimming rats. Am J Physiol. 1984 Mar;246(3 Pt 2):H398–H403. doi: 10.1152/ajpheart.1984.246.3.H398. [DOI] [PubMed] [Google Scholar]
  21. Messerli F. H. Cardiovascular effects of obesity and hypertension. Lancet. 1982 May 22;1(8282):1165–1168. doi: 10.1016/s0140-6736(82)92234-6. [DOI] [PubMed] [Google Scholar]
  22. Mushak P. Lead's toxic legacy for human reproduction: new studies establish significant bone lead release during pregnancy and nursing. J Lab Clin Med. 1998 Apr;131(4):295–297. doi: 10.1016/s0022-2143(98)90177-9. [DOI] [PubMed] [Google Scholar]
  23. Nieman D. C., Nehlsen-Cannarella S. I., Henson D. A., Butterworth D. E., Fagoaga O. R., Warren B. J., Rainwater M. K. Immune response to obesity and moderate weight loss. Int J Obes Relat Metab Disord. 1996 Apr;20(4):353–360. [PubMed] [Google Scholar]
  24. O'Flaherty E. J. Physiologically based models for bone-seeking elements. II. Kinetics of lead disposition in rats. Toxicol Appl Pharmacol. 1991 Nov;111(2):313–331. doi: 10.1016/0041-008x(91)90033-b. [DOI] [PubMed] [Google Scholar]
  25. O'Flaherty E. J. Physiologically based models for bone-seeking elements. IV. Kinetics of lead disposition in humans. Toxicol Appl Pharmacol. 1993 Jan;118(1):16–29. doi: 10.1006/taap.1993.1004. [DOI] [PubMed] [Google Scholar]
  26. Patterson C., Ericson J., Manea-Krichten M., Shirahata H. Natural skeletal levels of lead in Homo sapiens sapiens uncontaminated by technological lead. Sci Total Environ. 1991 Sep;107:205–236. doi: 10.1016/0048-9697(91)90260-l. [DOI] [PubMed] [Google Scholar]
  27. Pertschuk M. J., Crosby L. O., Barot L., Mullen J. L. Immunocompetency in anorexia nervosa. Am J Clin Nutr. 1982 May;35(5):968–972. doi: 10.1093/ajcn/35.5.968. [DOI] [PubMed] [Google Scholar]
  28. Pounds J. G., Long G. J., Rosen J. F. Cellular and molecular toxicity of lead in bone. Environ Health Perspect. 1991 Feb;91:17–32. doi: 10.1289/ehp.919117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pritchard J. E., Nowson C. A., Wark J. D. Bone loss accompanying diet-induced or exercise-induced weight loss: a randomised controlled study. Int J Obes Relat Metab Disord. 1996 Jun;20(6):513–520. [PubMed] [Google Scholar]
  30. Rabinowitz M. B., Wetherill G. W., Kopple J. D. Kinetic analysis of lead metabolism in healthy humans. J Clin Invest. 1976 Aug;58(2):260–270. doi: 10.1172/JCI108467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ramsdale S. J., Bassey E. J. Changes in bone mineral density associated with dietary-induced loss of body mass in young women. Clin Sci (Lond) 1994 Sep;87(3):343–348. doi: 10.1042/cs0870343. [DOI] [PubMed] [Google Scholar]
  32. Shelton K. R., Egle P. M. The proteins of lead-induced intranuclear inclusion bodies. J Biol Chem. 1982 Oct 10;257(19):11802–11807. [PubMed] [Google Scholar]
  33. Shick S. M., Wing R. R., Klem M. L., McGuire M. T., Hill J. O., Seagle H. Persons successful at long-term weight loss and maintenance continue to consume a low-energy, low-fat diet. J Am Diet Assoc. 1998 Apr;98(4):408–413. doi: 10.1016/S0002-8223(98)00093-5. [DOI] [PubMed] [Google Scholar]
  34. Silbergeld E. K., Sauk J., Somerman M., Todd A., McNeill F., Fowler B., Fontaine A., van Buren J. Lead in bone: storage site, exposure source, and target organ. Neurotoxicology. 1993 Summer-Fall;14(2-3):225–236. [PubMed] [Google Scholar]
  35. Silbergeld E. K., Schwartz J., Mahaffey K. Lead and osteoporosis: mobilization of lead from bone in postmenopausal women. Environ Res. 1988 Oct;47(1):79–94. doi: 10.1016/s0013-9351(88)80023-9. [DOI] [PubMed] [Google Scholar]
  36. Snyder A., Zierath J. R., Hawley J. A., Sleeper M. D., Craig B. W. The effects of exercise mode, swimming vs. running, upon bone growth in the rapidly growing female rat. Mech Ageing Dev. 1992;66(1):59–69. doi: 10.1016/0047-6374(92)90073-m. [DOI] [PubMed] [Google Scholar]
  37. Stallone D. D., Stunkard A. J., Zweiman B., Wadden T. A., Foster G. D. Decline in delayed-type hypersensitivity response in obese women following weight reduction. Clin Diagn Lab Immunol. 1994 Mar;1(2):202–205. doi: 10.1128/cdli.1.2.202-205.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Talbott S. M., Rothkopf M. M., Shapses S. A. Dietary restriction of energy and calcium alters bone turnover and density in younger and older female rats. J Nutr. 1998 Mar;128(3):640–645. doi: 10.1093/jn/128.3.640. [DOI] [PubMed] [Google Scholar]
  39. Velthuis-te Wierik E. J., van den Berg H., Schaafsma G., Hendriks H. F., Brouwer A. Energy restriction, a useful intervention to retard human ageing? Results of a feasibility study. Eur J Clin Nutr. 1994 Feb;48(2):138–148. [PubMed] [Google Scholar]
  40. Waalkes M. P., Harvey M. J., Klaassen C. D. Relative in vitro affinity of hepatic metallothionein for metals. Toxicol Lett. 1984 Jan;20(1):33–39. doi: 10.1016/0378-4274(84)90179-6. [DOI] [PubMed] [Google Scholar]
  41. Waalkes M. P., Klaassen C. D. Concentration of metallothionein in major organs of rats after administration of various metals. Fundam Appl Toxicol. 1985 Jun;5(3):473–477. doi: 10.1016/0272-0590(85)90094-6. [DOI] [PubMed] [Google Scholar]
  42. Zachwieja J. J. Exercise as treatment for obesity. Endocrinol Metab Clin North Am. 1996 Dec;25(4):965–988. doi: 10.1016/s0889-8529(05)70365-0. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES