Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1999 Oct;107(10):843–849. doi: 10.1289/ehp.99107843

Exposure to polychlorinated biphenyls and levels of thyroid hormones in children.

N Osius 1, W Karmaus 1, H Kruse 1, J Witten 1
PMCID: PMC1566609  PMID: 10504153

Abstract

As part of an epidemiologic study on exposure to a toxic waste incineration plant we investigated whether blood concentrations of polychlorinated biphenyls (PCBs), lead, and cadmium, as well as concentration of mercury in 24-hr urine samples were associated with thyroid hormone status. As an indication of status, we determined levels of thyroid-stimulating hormone (TSH), free thyroxine (FT(4)), and free triiodothyronine (FT(3)) in children living in households where [less than/equal to] 10 cigarettes were smoked per day. Eight PCB congeners (PCBs 101, 118, 138, 153, 170, 180, 183, and 187) were measured in whole blood samples. Of these, seven congeners (PCB 101 was not detected in any sample) and the sum of all PCB congeners were analyzed as predictors for thyroid hormone status in separate linear regression models adjusted for potential confounders. In addition, the possible effects of cadmium, lead, and mercury on levels of thyroid hormones were examined. Blood concentrations and information on questionnaire data were available for 320 children 7-10 years of age. We found a statistically significant positive association between the mono-ortho congener PCB 118 and TSH as well as statistically significant negative relationships of PCBs 138, 153, 180, 183, and 187 to FT(3). There was no association for the PCB congeners and FT(4). Blood cadmium concentration was associated with increasing TSH and diminishing FT(4). Blood lead and urine concentration of mercury were of no importance to thyroid hormone levels. The results stress the need for future studies on the possible influences of PCB and cadmium exposure on thyroid hormones, particularly in children. These studies should also take neurologic development into account.

Full text

PDF
843

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barregård L., Lindstedt G., Schütz A., Sällsten G. Endocrine function in mercury exposed chloralkali workers. Occup Environ Med. 1994 Aug;51(8):536–540. doi: 10.1136/oem.51.8.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brouwer A., Ahlborg U. G., van Leeuwen F. X., Feeley M. M. Report of the WHO working group on the assessment of health risks for human infants from exposure to PCDDs, PCDFs and PCBs. Chemosphere. 1998 Oct-Nov;37(9-12):1627–1643. doi: 10.1016/s0045-6535(98)00230-6. [DOI] [PubMed] [Google Scholar]
  3. Brouwer A., Morse D. C., Lans M. C., Schuur A. G., Murk A. J., Klasson-Wehler E., Bergman A., Visser T. J. Interactions of persistent environmental organohalogens with the thyroid hormone system: mechanisms and possible consequences for animal and human health. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):59–84. doi: 10.1177/074823379801400107. [DOI] [PubMed] [Google Scholar]
  4. Brouwer A., van den Berg K. J. Binding of a metabolite of 3,4,3',4'-tetrachlorobiphenyl to transthyretin reduces serum vitamin A transport by inhibiting the formation of the protein complex carrying both retinol and thyroxin. Toxicol Appl Pharmacol. 1986 Sep 30;85(3):301–312. doi: 10.1016/0041-008x(86)90337-6. [DOI] [PubMed] [Google Scholar]
  5. Capen C. C. Mechanistic data and risk assessment of selected toxic end points of the thyroid gland. Toxicol Pathol. 1997 Jan-Feb;25(1):39–48. doi: 10.1177/019262339702500109. [DOI] [PubMed] [Google Scholar]
  6. Cheek A. O., Kow K., Chen J., McLachlan J. A. Potential mechanisms of thyroid disruption in humans: interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin. Environ Health Perspect. 1999 Apr;107(4):273–278. doi: 10.1289/ehp.99107273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Huseman C. A., Varma M. M., Angle C. R. Neuroendocrine effects of toxic and low blood lead levels in children. Pediatrics. 1992 Aug;90(2 Pt 1):186–189. [PubMed] [Google Scholar]
  8. Höldke B., Karmaus W., Kruse H. Körperlast an polychlorierten Biphenylen im Vollblut bei 7-10jährigen Kindern in der Umgebung einer Sonderabfallverbrennungsanlage. Gesundheitswesen. 1998 Aug-Sep;60(8-9):505–512. [PubMed] [Google Scholar]
  9. Koopman-Esseboom C., Morse D. C., Weisglas-Kuperus N., Lutkeschipholt I. J., Van der Paauw C. G., Tuinstra L. G., Brouwer A., Sauer P. J. Effects of dioxins and polychlorinated biphenyls on thyroid hormone status of pregnant women and their infants. Pediatr Res. 1994 Oct;36(4):468–473. doi: 10.1203/00006450-199410000-00009. [DOI] [PubMed] [Google Scholar]
  10. Lafuente A., Blanco A., Márquez N., Alvarez-Demanuel E., Esquifino A. I. Effects of acute and subchronic cadmium administration on pituitary hormone secretion in rat. Rev Esp Fisiol. 1997 Sep;53(3):265–269. [PubMed] [Google Scholar]
  11. Lans M. C., Spiertz C., Brouwer A., Koeman J. H. Different competition of thyroxine binding to transthyretin and thyroxine-binding globulin by hydroxy-PCBs, PCDDs and PCDFs. Eur J Pharmacol. 1994 Apr 4;270(2-3):129–136. doi: 10.1016/0926-6917(94)90054-x. [DOI] [PubMed] [Google Scholar]
  12. Mazhitova Z., Jensen S., Ritzén M., Zetterström R. Chlorinated contaminants, growth and thyroid function in schoolchildren from the Aral Sea region in Kazakhstan. Acta Paediatr. 1998 Sep;87(9):991–995. doi: 10.1080/080352598750031671. [DOI] [PubMed] [Google Scholar]
  13. McKinney J. D., Waller C. L. Molecular determinants of hormone mimicry: halogenated aromatic hydrocarbon environmental agents. J Toxicol Environ Health B Crit Rev. 1998 Jan-Mar;1(1):27–58. doi: 10.1080/10937409809524542. [DOI] [PubMed] [Google Scholar]
  14. McKinney J. D., Waller C. L. Polychlorinated biphenyls as hormonally active structural analogues. Environ Health Perspect. 1994 Mar;102(3):290–297. doi: 10.1289/ehp.94102290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Morse D. C., Groen D., Veerman M., van Amerongen C. J., Koëter H. B., Smits van Prooije A. E., Visser T. J., Koeman J. H., Brouwer A. Interference of polychlorinated biphenyls in hepatic and brain thyroid hormone metabolism in fetal and neonatal rats. Toxicol Appl Pharmacol. 1993 Sep;122(1):27–33. doi: 10.1006/taap.1993.1168. [DOI] [PubMed] [Google Scholar]
  16. Nagayama J., Okamura K., Iida T., Hirakawa H., Matsueda T., Tsuji H., Hasegawa M., Sato K., Ma H. Y., Yanagawa T. Postnatal exposure to chlorinated dioxins and related chemicals on thyroid hormone status in Japanese breast-fed infants. Chemosphere. 1998 Oct-Nov;37(9-12):1789–1793. doi: 10.1016/s0045-6535(98)00244-6. [DOI] [PubMed] [Google Scholar]
  17. Needleman H. L., Bellinger D. The health effects of low level exposure to lead. Annu Rev Public Health. 1991;12:111–140. doi: 10.1146/annurev.pu.12.050191.000551. [DOI] [PubMed] [Google Scholar]
  18. Nishijo M., Nakagawa H., Morikawa Y., Tabata M., Senma M., Miura K., Tsuritani I., Honda R., Kido T., Teranishi H. [A study of thyroid hormone levels of inhabitants of the cadmium-polluted Kakehashi River basin]. Nihon Eiseigaku Zasshi. 1994 Jun;49(2):598–605. doi: 10.1265/jjh.49.598. [DOI] [PubMed] [Google Scholar]
  19. Oppenheimer J. H., Schwartz H. L. Molecular basis of thyroid hormone-dependent brain development. Endocr Rev. 1997 Aug;18(4):462–475. doi: 10.1210/edrv.18.4.0309. [DOI] [PubMed] [Google Scholar]
  20. Osius N., Karmaus W. Schilddrüsenhormonspiegel bei Kindern in der Umgebung einer Sonderabfallverbrennungsanlage (SVA) in Südhessen. Gesundheitswesen. 1998 Feb;60(2):107–112. [PubMed] [Google Scholar]
  21. Pluim H. J., de Vijlder J. J., Olie K., Kok J. H., Vulsma T., van Tijn D. A., van der Slikke J. W., Koppe J. G. Effects of pre- and postnatal exposure to chlorinated dioxins and furans on human neonatal thyroid hormone concentrations. Environ Health Perspect. 1993 Nov;101(6):504–508. doi: 10.1289/ehp.93101504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Porterfield S. P., Hendrich C. E. The role of thyroid hormones in prenatal and neonatal neurological development--current perspectives. Endocr Rev. 1993 Feb;14(1):94–106. doi: 10.1210/edrv-14-1-94. [DOI] [PubMed] [Google Scholar]
  23. Porterfield S. P. Vulnerability of the developing brain to thyroid abnormalities: environmental insults to the thyroid system. Environ Health Perspect. 1994 Jun;102 (Suppl 2):125–130. doi: 10.1289/ehp.94102125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Prentice A. M. Body mass index standards for children. Are useful for clinicians but not yet for epidemiologists. BMJ. 1998 Nov 21;317(7170):1401–1402. doi: 10.1136/bmj.317.7170.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rickenbacher U., McKinney J. D., Oatley S. J., Blake C. C. Structurally specific binding of halogenated biphenyls to thyroxine transport protein. J Med Chem. 1986 May;29(5):641–648. doi: 10.1021/jm00155a010. [DOI] [PubMed] [Google Scholar]
  26. Sauer P. J., Huisman M., Koopman-Esseboom C., Morse D. C., Smits-van Prooije A. E., van de Berg K. J., Tuinstra L. G., van der Paauw C. G., Boersma E. R., Weisglas-Kuperus N. Effects of polychlorinated biphenyls (PCBs) and dioxins on growth and development. Hum Exp Toxicol. 1994 Dec;13(12):900–906. doi: 10.1177/096032719401301213. [DOI] [PubMed] [Google Scholar]
  27. Tilson H. A., Kodavanti P. R. Neurochemical effects of polychlorinated biphenyls: an overview and identification of research needs. Neurotoxicology. 1997;18(3):727–743. [PubMed] [Google Scholar]
  28. Weisglas-Kuperus N. Neurodevelopmental, immunological and endocrinological indices of perinatal human exposure to PCBs and dioxins. Chemosphere. 1998 Oct-Nov;37(9-12):1845–1853. doi: 10.1016/s0045-6535(98)00250-1. [DOI] [PubMed] [Google Scholar]
  29. Yoshizuka M., Mori N., Hamasaki K., Tanaka I., Yokoyama M., Hara K., Doi Y., Umezu Y., Araki H., Sakamoto Y. Cadmium toxicity in the thyroid gland of pregnant rats. Exp Mol Pathol. 1991 Aug;55(1):97–104. doi: 10.1016/0014-4800(91)90021-o. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES