Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1999 Jul;107(7):521–525. doi: 10.1289/ehp.99107521

Daily variation of particulate air pollution and poor cardiac autonomic control in the elderly.

D Liao 1, J Creason 1, C Shy 1, R Williams 1, R Watts 1, R Zweidinger 1
PMCID: PMC1566669  PMID: 10378998

Abstract

examined the cardiac autonomic response to daily variations in PM in 26 elderly (mean age 81) individuals for 3 consecutive weeks. Several standardized methods were used to measure 24-hr average PM concentrations prior to the clinical test inside (indoor PM2.5) and immediately outside (outdoor PM2.5 and PM2.5-10) of participants' residences. Resting, supine, 6-min R wave to R wave (R-R) interval data were collected to estimate high frequency (0.15-0.40 Hz) and low frequency (0.04-0.15 Hz) powers and standard deviation of normal R-R intervals (SDNN) as cardiac autonomic control indices. Participant-specific lower heart rate variability days were defined as days for which the high-frequency indices fell below the first tertile of the individual's high-frequency distribution over the study period. Indoor PM2.5 > 15 microg/m3 was used to define high pollution days. Results show that the odds ratio (95% confidence interval) of low heart rate variability high frequency for high (vs. not high) pollution days was 3.08 (1.43, 6.59). The ss-coefficients (standard error) from mixed models to assess the quantitative relationship between variations in indoor PM2.5 and the log-transformed high frequency, low frequency, and SDNN were: -0.029 (0.010), -0.027 (0.009), and -0.004 (0.003), respectively. This first study of cardiac autonomic control response to daily variations of PM2.5 indicates that increased levels of PM2.5 are associated with lower cardiac autonomic control, suggesting a possible mechanistic link between PM and cardiovascular disease mortality.

Full text

PDF
521

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akselrod S., Gordon D., Ubel F. A., Shannon D. C., Berger A. C., Cohen R. J. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981 Jul 10;213(4504):220–222. doi: 10.1126/science.6166045. [DOI] [PubMed] [Google Scholar]
  2. Burnett R. T., Dales R. E., Brook J. R., Raizenne M. E., Krewski D. Association between ambient carbon monoxide levels and hospitalizations for congestive heart failure in the elderly in 10 Canadian cities. Epidemiology. 1997 Mar;8(2):162–167. doi: 10.1097/00001648-199703000-00007. [DOI] [PubMed] [Google Scholar]
  3. Burnett R. T., Dales R., Krewski D., Vincent R., Dann T., Brook J. R. Associations between ambient particulate sulfate and admissions to Ontario hospitals for cardiac and respiratory diseases. Am J Epidemiol. 1995 Jul 1;142(1):15–22. doi: 10.1093/oxfordjournals.aje.a117540. [DOI] [PubMed] [Google Scholar]
  4. Gossler K. B., Goldberg S. J. Velocity gradients across normal cardiac valves. Am J Cardiol. 1991 Jan 1;67(1):99–101. doi: 10.1016/0002-9149(91)90111-w. [DOI] [PubMed] [Google Scholar]
  5. Janssen N. A., Hoek G., Brunekreef B., Harssema H., Mensink I., Zuidhof A. Personal sampling of particles in adults: relation among personal, indoor, and outdoor air concentrations. Am J Epidemiol. 1998 Mar 15;147(6):537–547. doi: 10.1093/oxfordjournals.aje.a009485. [DOI] [PubMed] [Google Scholar]
  6. Kamath M. V., Ghista D. N., Fallen E. L., Fitchett D., Miller D., McKelvie R. Heart rate variability power spectrogram as a potential noninvasive signature of cardiac regulatory system response, mechanisms, and disorders. Heart Vessels. 1987;3(1):33–41. doi: 10.1007/BF02073645. [DOI] [PubMed] [Google Scholar]
  7. Kleiger R. E., Miller J. P., Bigger J. T., Jr, Moss A. J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987 Feb 1;59(4):256–262. doi: 10.1016/0002-9149(87)90795-8. [DOI] [PubMed] [Google Scholar]
  8. Liao D., Cai J., Rosamond W. D., Barnes R. W., Hutchinson R. G., Whitsel E. A., Rautaharju P., Heiss G. Cardiac autonomic function and incident coronary heart disease: a population-based case-cohort study. The ARIC Study. Atherosclerosis Risk in Communities Study. Am J Epidemiol. 1997 Apr 15;145(8):696–706. doi: 10.1093/aje/145.8.696. [DOI] [PubMed] [Google Scholar]
  9. Lombardi F., Sandrone G., Pernpruner S., Sala R., Garimoldi M., Cerutti S., Baselli G., Pagani M., Malliani A. Heart rate variability as an index of sympathovagal interaction after acute myocardial infarction. Am J Cardiol. 1987 Dec 1;60(16):1239–1245. doi: 10.1016/0002-9149(87)90601-1. [DOI] [PubMed] [Google Scholar]
  10. Malik M., Camm A. J. Heart rate variability. Clin Cardiol. 1990 Aug;13(8):570–576. doi: 10.1002/clc.4960130811. [DOI] [PubMed] [Google Scholar]
  11. Malik M., Farrell T., Camm A. J. Circadian rhythm of heart rate variability after acute myocardial infarction and its influence on the prognostic value of heart rate variability. Am J Cardiol. 1990 Nov 1;66(15):1049–1054. doi: 10.1016/0002-9149(90)90503-s. [DOI] [PubMed] [Google Scholar]
  12. Martin G. J., Magid N. M., Myers G., Barnett P. S., Schaad J. W., Weiss J. S., Lesch M., Singer D. H. Heart rate variability and sudden death secondary to coronary artery disease during ambulatory electrocardiographic monitoring. Am J Cardiol. 1987 Jul 1;60(1):86–89. doi: 10.1016/0002-9149(87)90990-8. [DOI] [PubMed] [Google Scholar]
  13. Ori Z., Monir G., Weiss J., Sayhouni X., Singer D. H. Heart rate variability. Frequency domain analysis. Cardiol Clin. 1992 Aug;10(3):499–537. [PubMed] [Google Scholar]
  14. Pagani M., Lombardi F., Guzzetti S., Rimoldi O., Furlan R., Pizzinelli P., Sandrone G., Malfatto G., Dell'Orto S., Piccaluga E. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986 Aug;59(2):178–193. doi: 10.1161/01.res.59.2.178. [DOI] [PubMed] [Google Scholar]
  15. Pfeifer M. A., Cook D., Brodsky J., Tice D., Reenan A., Swedine S., Halter J. B., Porte D., Jr Quantitative evaluation of cardiac parasympathetic activity in normal and diabetic man. Diabetes. 1982 Apr;31(4 Pt 1):339–345. doi: 10.2337/diab.31.4.339. [DOI] [PubMed] [Google Scholar]
  16. Pomeranz B., Macaulay R. J., Caudill M. A., Kutz I., Adam D., Gordon D., Kilborn K. M., Barger A. C., Shannon D. C., Cohen R. J. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol. 1985 Jan;248(1 Pt 2):H151–H153. doi: 10.1152/ajpheart.1985.248.1.H151. [DOI] [PubMed] [Google Scholar]
  17. Pope C. A., 3rd, Kanner R. E. Acute effects of PM10 pollution on pulmonary function of smokers with mild to moderate chronic obstructive pulmonary disease. Am Rev Respir Dis. 1993 Jun;147(6 Pt 1):1336–1340. doi: 10.1164/ajrccm/147.6_Pt_1.1336. [DOI] [PubMed] [Google Scholar]
  18. Pope C. A., 3rd Particulate pollution and health: a review of the Utah valley experience. J Expo Anal Environ Epidemiol. 1996 Jan-Mar;6(1):23–34. [PubMed] [Google Scholar]
  19. Pönkä A., Virtanen M. Low-level air pollution and hospital admissions for cardiac and cerebrovascular diseases in Helsinki. Am J Public Health. 1996 Sep;86(9):1273–1280. doi: 10.2105/ajph.86.9.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schwartz J. Air pollution and hospital admissions for cardiovascular disease in Tucson. Epidemiology. 1997 Jul;8(4):371–377. doi: 10.1097/00001648-199707000-00004. [DOI] [PubMed] [Google Scholar]
  21. Schwartz J. Air pollution and hospital admissions for the elderly in Detroit, Michigan. Am J Respir Crit Care Med. 1994 Sep;150(3):648–655. doi: 10.1164/ajrccm.150.3.8087333. [DOI] [PubMed] [Google Scholar]
  22. Schwartz J., Morris R. Air pollution and hospital admissions for cardiovascular disease in Detroit, Michigan. Am J Epidemiol. 1995 Jul 1;142(1):23–35. doi: 10.1093/oxfordjournals.aje.a117541. [DOI] [PubMed] [Google Scholar]
  23. Tsuji H., Larson M. G., Venditti F. J., Jr, Manders E. S., Evans J. C., Feldman C. L., Levy D. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation. 1996 Dec 1;94(11):2850–2855. doi: 10.1161/01.cir.94.11.2850. [DOI] [PubMed] [Google Scholar]
  24. Vaishnav S., Stevenson R., Marchant B., Lagi K., Ranjadayalan K., Timmis A. D. Relation between heart rate variability early after acute myocardial infarction and long-term mortality. Am J Cardiol. 1994 Apr 1;73(9):653–657. doi: 10.1016/0002-9149(94)90928-8. [DOI] [PubMed] [Google Scholar]
  25. Watkinson W. P., Campen M. J., Costa D. L. Cardiac arrhythmia induction after exposure to residual oil fly ash particles in a rodent model of pulmonary hypertension. Toxicol Sci. 1998 Feb;41(2):209–216. doi: 10.1006/toxs.1997.2406. [DOI] [PubMed] [Google Scholar]
  26. Watts R. R., Wallingford K. M., Williams R. W., House D. E., Lewtas J. Airborne exposures to PAH and PM2.5 particles for road paving workers applying conventional asphalt and crumb rubber modified asphalt. J Expo Anal Environ Epidemiol. 1998 Apr-Jun;8(2):213–229. [PubMed] [Google Scholar]
  27. Zmirou D., Schwartz J., Saez M., Zanobetti A., Wojtyniak B., Touloumi G., Spix C., Ponce de León A., Le Moullec Y., Bacharova L. Time-series analysis of air pollution and cause-specific mortality. Epidemiology. 1998 Sep;9(5):495–503. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES