Abstract
The kidneys are capable of carrying out extensive oxidation, reduction, hydrolysis, and conjugation reactions. Renal cortex has high activities of cytochrome P450 and glutathione (GSH) S-transferase. In contrast, renal medulla has high activity of prostaglandin synthetase, which can catalyze co-oxidation of xenobiotics. While these pathways are found in many tissues and at higher activities than in kidney, several key enzymes of the mercapturic acid pathway are found at especially high activities in cells of the renal proximal tubule. Investigations over the last two decades demonstrated that GSH conjugation is not only a mechanism for detoxification of reactive electrophiles. Rather, metabolism of GSH S-conjugates to the corresponding cysteine S-conjugates represents a branch point: cysteine S-conjugates may be metabolized by the cysteine S-conjugate N-acetyl-transferase to mercapturic acids, which are nontoxic and are excreted, or they may be substrates for the pyridoxal phosphate-dependent cysteine conjugate beta-lyase, which catalyzes either a beta-elimination or a transamination reaction to produce unstable thiols. These thiols rearrange to form potent acylating species that can covalently bind to cellular macromolecules, thereby producing cytotoxicity, mutagenicity, and carcinogenicity. In addition to the beta-lyase, two other renal enzymes, L-2-amino (2-hydroxy) acid oxidase and cysteine conjugate S-oxidase, can bioactivate chemicals to produce nephrotoxic species. Several halogenated alkanes and alkenes are bioactivated by these pathways. These findings show that mammalian kidney is highly active in bioactivation of xenobiotics. Although the properties of the corresponding enzymes in humans may differ, it is clear that renal metabolism can be a critical determinant of risk to chemical injury.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anders M. W. Metabolism of drugs by the kidney. Kidney Int. 1980 Nov;18(5):636–647. doi: 10.1038/ki.1980.181. [DOI] [PubMed] [Google Scholar]
- Commandeur J. N., Vermeulen N. P. Molecular and biochemical mechanisms of chemically induced nephrotoxicity: a review. Chem Res Toxicol. 1990 May-Jun;3(3):171–194. doi: 10.1021/tx00015a001. [DOI] [PubMed] [Google Scholar]
- Dekant W., Lash L. H., Anders M. W. Bioactivation mechanism of the cytotoxic and nephrotoxic S-conjugate S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7443–7447. doi: 10.1073/pnas.84.21.7443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elfarra A. A., Baggs R. B., Anders M. W. Structure-nephrotoxicity relationships of S-(2-chloroethyl)-DL-cysteine and analogs: role for an episulfonium ion. J Pharmacol Exp Ther. 1985 May;233(2):512–516. [PubMed] [Google Scholar]
- Elfarra A. A., Jakobson I., Anders M. W. Mechanism of S-(1,2-dichlorovinyl)glutathione-induced nephrotoxicity. Biochem Pharmacol. 1986 Jan 15;35(2):283–288. doi: 10.1016/0006-2952(86)90527-7. [DOI] [PubMed] [Google Scholar]
- Elfarra A. A., Lash L. H., Anders M. W. Alpha-ketoacids stimulate rat renal cysteine conjugate beta-lyase activity and potentiate the cytotoxicity of S-(1,2-dichlorovinyl)-L-cysteine. Mol Pharmacol. 1987 Feb;31(2):208–212. [PubMed] [Google Scholar]
- Gram T. E., Okine L. K., Gram R. A. The metabolism of xenobiotics by certain extrahepatic organs and its relation to toxicity. Annu Rev Pharmacol Toxicol. 1986;26:259–291. doi: 10.1146/annurev.pa.26.040186.001355. [DOI] [PubMed] [Google Scholar]
- Guder W. G., Ross B. D. Enzyme distribution along the nephron. Kidney Int. 1984 Aug;26(2):101–111. doi: 10.1038/ki.1984.143. [DOI] [PubMed] [Google Scholar]
- Hinchman C. A., Ballatori N. Glutathione-degrading capacities of liver and kidney in different species. Biochem Pharmacol. 1990 Sep 1;40(5):1131–1135. doi: 10.1016/0006-2952(90)90503-d. [DOI] [PubMed] [Google Scholar]
- Kaloyanides G. J. Metabolic interactions between drugs and renal tubulointerstitial cells: role in nephrotoxicity. Kidney Int. 1991 Mar;39(3):531–540. doi: 10.1038/ki.1991.61. [DOI] [PubMed] [Google Scholar]
- Koob M., Dekant W. Metabolism of hexafluoropropene. Evidence for bioactivation by glutathione conjugate formation in the kidney. Drug Metab Dispos. 1990 Nov-Dec;18(6):911–916. [PubMed] [Google Scholar]
- Larsen G. L. Distribution of cysteine conjugate beta-lyase in gastrointestinal bacteria and in the environment. Xenobiotica. 1985 Mar;15(3):199–209. doi: 10.3109/00498258509045350. [DOI] [PubMed] [Google Scholar]
- Lash L. H., Anders M. W. Uptake of nephrotoxic S-conjugates by isolated rat renal proximal tubular cells. J Pharmacol Exp Ther. 1989 Feb;248(2):531–537. [PubMed] [Google Scholar]
- Lash L. H., Elfarra A. A., Anders M. W. Renal cysteine conjugate beta-lyase. Bioactivation of nephrotoxic cysteine S-conjugates in mitochondrial outer membrane. J Biol Chem. 1986 May 5;261(13):5930–5935. [PubMed] [Google Scholar]
- Lash L. H., Elfarra A. A., Rakiewicz-Nemeth D., Anders M. W. Bioactivation mechanism of cytotoxic homocysteine S-conjugates. Arch Biochem Biophys. 1990 Feb 1;276(2):322–330. doi: 10.1016/0003-9861(90)90727-g. [DOI] [PubMed] [Google Scholar]
- Lash L. H., Jones D. P. Uptake of the glutathione conjugate S-(1,2-dichlorovinyl)glutathione by renal basal-lateral membrane vesicles and isolated kidney cells. Mol Pharmacol. 1985 Sep;28(3):278–282. [PubMed] [Google Scholar]
- Lash L. H., Nelson R. M., Van Dyke R. A., Anders M. W. Purification and characterization of human kidney cytosolic cysteine conjugate beta-lyase activity. Drug Metab Dispos. 1990 Jan-Feb;18(1):50–54. [PubMed] [Google Scholar]
- Lash L. H. Susceptibility to toxic injury in different nephron cell populations. Toxicol Lett. 1990 Sep;53(1-2):97–104. doi: 10.1016/0378-4274(90)90101-q. [DOI] [PubMed] [Google Scholar]
- Lock E. A., Odum J., Ormond P. Transport of N-acetyl-S-pentachloro-1,3-butadienylcysteine by rat renal cortex. Arch Toxicol. 1986 May;59(1):12–15. doi: 10.1007/BF00263950. [DOI] [PubMed] [Google Scholar]
- Mohandas J., Marshall J. J., Duggin G. G., Horvath J. S., Tiller D. J. Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney. Possible implications in analgesic nephropathy. Biochem Pharmacol. 1984 Jun 1;33(11):1801–1807. doi: 10.1016/0006-2952(84)90353-8. [DOI] [PubMed] [Google Scholar]
- Reed D. J., Foureman G. L. A comparison of the alkylating capabilities of the cysteinyl and glutathionyl conjugates of 1,2-dichloroethane. Adv Exp Med Biol. 1986;197:469–475. doi: 10.1007/978-1-4684-5134-4_45. [DOI] [PubMed] [Google Scholar]
- Rush G. F., Smith J. H., Newton J. F., Hook J. B. Chemically induced nephrotoxicity: role of metabolic activation. Crit Rev Toxicol. 1984;13(2):99–160. doi: 10.3109/10408448409034079. [DOI] [PubMed] [Google Scholar]
- Sausen P. J., Elfarra A. A. Cysteine conjugate S-oxidase. Characterization of a novel enzymatic activity in rat hepatic and renal microsomes. J Biol Chem. 1990 Apr 15;265(11):6139–6145. [PubMed] [Google Scholar]
- Sausen P. J., Elfarra A. A. Reactivity of cysteine S-conjugate sulfoxides: formation of S-[1-chloro-2-(S-glutathionyl)vinyl]-L-cysteine sulfoxide by the reaction of S-(1,2-dichlorovinyl)-L-cysteine sulfoxide with glutathione. Chem Res Toxicol. 1991 Nov-Dec;4(6):655–660. doi: 10.1021/tx00024a010. [DOI] [PubMed] [Google Scholar]
- Schaeffer V. H., Stevens J. L. Mechanism of transport for toxic cysteine conjugates in rat kidney cortex membrane vesicles. Mol Pharmacol. 1987 Aug;32(1):293–298. [PubMed] [Google Scholar]
- Stevens J. L., Ayoubi N., Robbins J. D. The role of mitochondrial matrix enzymes in the metabolism and toxicity of cysteine conjugates. J Biol Chem. 1988 Mar 5;263(7):3395–3401. [PubMed] [Google Scholar]
- Stevens J. L. Cysteine conjugate beta-lyase activities in rat kidney cortex: subcellular localization and relationship to the hepatic enzyme. Biochem Biophys Res Commun. 1985 Jun 14;129(2):499–504. doi: 10.1016/0006-291x(85)90179-2. [DOI] [PubMed] [Google Scholar]
- Stevens J. L., Hatzinger P. B., Hayden P. J. Quantitation of multiple pathways for the metabolism of nephrotoxic cysteine conjugates using selective inhibitors of L-alpha-hydroxy acid oxidase (L-amino acid oxidase) and cysteine conjugate beta-lyase. Drug Metab Dispos. 1989 May-Jun;17(3):297–303. [PubMed] [Google Scholar]
- Stevens J. L. Isolation and characterization of a rat liver enzyme with both cysteine conjugate beta-lyase and kynureninase activity. J Biol Chem. 1985 Jul 5;260(13):7945–7950. [PubMed] [Google Scholar]
- Stevens J. L., Robbins J. D., Byrd R. A. A purified cysteine conjugate beta-lyase from rat kidney cytosol. Requirement for an alpha-keto acid or an amino acid oxidase for activity and identity with soluble glutamine transaminase K. J Biol Chem. 1986 Nov 25;261(33):15529–15537. [PubMed] [Google Scholar]
- Walker L. A., Valtin H. Biological importance of nephron heterogeneity. Annu Rev Physiol. 1982;44:203–219. doi: 10.1146/annurev.ph.44.030182.001223. [DOI] [PubMed] [Google Scholar]
- Walker R. J., Duggin G. G. Drug nephrotoxicity. Annu Rev Pharmacol Toxicol. 1988;28:331–345. doi: 10.1146/annurev.pa.28.040188.001555. [DOI] [PubMed] [Google Scholar]
- Zhang G. H., Stevens J. L. Transport and activation of S-(1,2-dichlorovinyl)-L-cysteine and N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine in rat kidney proximal tubules. Toxicol Appl Pharmacol. 1989 Aug;100(1):51–61. doi: 10.1016/0041-008x(89)90091-4. [DOI] [PubMed] [Google Scholar]
