Abstract
Animal studies have demonstrated that the mouse and rabbit are far more responsive to the inductive properties of rifamycin derivatives than the rat and guinea pig. The rat hepatic cytochrome P450 system seems to be resistant to the action of rifampicin unless very high doses are used. Mouse hepatic microsomal mixed-function oxidase activity is markedly increased by repeated dosing with rifampicin, whereas administration of rifabutin may be ineffective. In humans, both rifampicin and rifabutin are extensively metabolized and induce their own metabolism. The induced metabolic pathways remain essentially unknown. Under autoinduction conditions, the elimination half-life of rifampicin decreases, whereas that of rifabutin is not altered. Although the effects of repeated administration of rifampicin and rifabutin on the various forms of cytochrome P450 in humans have not been extensively examined, there is convincing evidence that the P4503A subfamily is induced by either drug, whereas the P4501A subfamily and P4502D6 do not appear to be affected by rifampicin. Limited reliable information is available concerning the induction of human glucuronyltransferase activities by rifampicin and rifabutin which, however, do not seem to influence zidovudine glucuronide formation in healthy subjects.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet. 1978 Mar-Apr;3(2):108–127. doi: 10.2165/00003088-197803020-00002. [DOI] [PubMed] [Google Scholar]
- Acocella G., Pagani V., Marchetti M., Baroni G. C., Nicolis F. B. Kinetic studies on rifampicin. I. Serum concentration analysis in subjects treated with different oral doses over a period of two weeks. Chemotherapy. 1971;16(6):356–370. doi: 10.1159/000220750. [DOI] [PubMed] [Google Scholar]
- Adachi Y., Nanno T., Yamashita M., Ueshima S., Yamamoto T. Induction of rat liver bilirubin-conjugating enzymes and glutathione S-transferase by rifampicin. Gastroenterol Jpn. 1985 Apr;20(2):104–110. doi: 10.1007/BF02776672. [DOI] [PubMed] [Google Scholar]
- Back D. J., Breckenridge A. M., Crawford F. E., Hall J. M., MacIver M., Orme M. L., Rowe P. H., Smith E., Watts M. J. The effect of rifampicin on the pharmacokinetics of ethynylestradiol in women. Contraception. 1980 Feb;21(2):135–143. doi: 10.1016/0010-7824(80)90125-0. [DOI] [PubMed] [Google Scholar]
- Back D. J., Maggs J. L., Purba H. S., Newby S., Park B. K. 2-Hydroxylation of ethinyloestradiol in relation to the oxidation of sparteine and antipyrine. Br J Clin Pharmacol. 1984 Oct;18(4):603–607. doi: 10.1111/j.1365-2125.1984.tb02511.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barry M., Feely J. Enzyme induction and inhibition. Pharmacol Ther. 1990;48(1):71–94. doi: 10.1016/0163-7258(90)90019-x. [DOI] [PubMed] [Google Scholar]
- Bennett P. N., John V. A., Whitmarsh V. B. Effect of rifampicin on metoprolol and antipyrine kinetics. Br J Clin Pharmacol. 1982 Mar;13(3):387–391. doi: 10.1111/j.1365-2125.1982.tb01390.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blum M. R., Liao S. H., Good S. S., de Miranda P. Pharmacokinetics and bioavailability of zidovudine in humans. Am J Med. 1988 Aug 29;85(2A):189–194. [PubMed] [Google Scholar]
- Bock K. W., Wiltfang J., Blume R., Ullrich D., Bircher J. Paracetamol as a test drug to determine glucuronide formation in man. Effects of inducers and of smoking. Eur J Clin Pharmacol. 1987;31(6):677–683. doi: 10.1007/BF00541295. [DOI] [PubMed] [Google Scholar]
- Bolt H. M., Kappus H., Bolt M. Effect of rifampicin treatment on the metabolism of oestradiol and 17alpha-ethinyloestradiol by human liver microsomes. Eur J Clin Pharmacol. 1975 Jun 13;8(5):301–307. doi: 10.1007/BF00562654. [DOI] [PubMed] [Google Scholar]
- Boobis A. R., Nebert D. W., Felton J. S. Comparison of beta-naphthoflavone and 3-methylcholanthrene as inducers of hepatic cytochrome(s) P-448 and aryl hydrocarbon (benzo[a]pyrene) hydroxylase activity. Mol Pharmacol. 1977 Mar;13(2):259–268. [PubMed] [Google Scholar]
- Cocchiara G., Strolin Benedetti M., Vicario G. P., Ballabio M., Gioia B., Vioglio S., Vigevani A. Urinary metabolites of rifabutin, a new antimycobacterial agent, in human volunteers. Xenobiotica. 1989 Jul;19(7):769–780. doi: 10.3109/00498258909042314. [DOI] [PubMed] [Google Scholar]
- Constantopoulos A., Loupa H., Krikos X. Augmentation of hepatic uridine-diphosphate glucuronyl transferase activity by antituberculous drugs in hamsters in vivo. Cytobios. 1987;52(210-211):185–191. [PubMed] [Google Scholar]
- Danhof M., Verbeek R. M., van Boxtel C. J., Boeijinga J. K., Breimer D. D. Differential effects of enzyme induction on antipyrine metabolite formation. Br J Clin Pharmacol. 1982 Mar;13(3):379–386. doi: 10.1111/j.1365-2125.1982.tb01389.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eichelbaum M., Mineshita S., Ohnhaus E. E., Zekorn C. The influence of enzyme induction on polymorphic sparteine oxidation. Br J Clin Pharmacol. 1986 Jul;22(1):49–53. doi: 10.1111/j.1365-2125.1986.tb02879.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furman P. A., Fyfe J. A., St Clair M. H., Weinhold K., Rideout J. L., Freeman G. A., Lehrman S. N., Bolognesi D. P., Broder S., Mitsuya H. Phosphorylation of 3'-azido-3'-deoxythymidine and selective interaction of the 5'-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8333–8337. doi: 10.1073/pnas.83.21.8333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ged C., Rouillon J. M., Pichard L., Combalbert J., Bressot N., Bories P., Michel H., Beaune P., Maurel P. The increase in urinary excretion of 6 beta-hydroxycortisol as a marker of human hepatic cytochrome P450IIIA induction. Br J Clin Pharmacol. 1989 Oct;28(4):373–387. doi: 10.1111/j.1365-2125.1989.tb03516.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guengerich F. P. Oxidation of 17 alpha-ethynylestradiol by human liver cytochrome P-450. Mol Pharmacol. 1988 May;33(5):500–508. [PubMed] [Google Scholar]
- Hakim J., Feldmann G., Boivin P., Troube H., Boucherot J., Penaud J., Guibout P., Kreis B. Etude comparative des activités bilirubine et paraitrophénol glucuronyl transférasiques hépatiques. 3. Effet de la rifampicine seule ou associée à la streptmycine et à l'isoniazide chez l'homme. Pathol Biol (Paris) 1973 Mar;21(3):255–263. [PubMed] [Google Scholar]
- Haumont M., Magdalou J., Lafaurie C., Ziegler J. M., Siest G., Colin J. N. Phenobarbital inducible UDP-glucuronosyltransferase is responsible for glucuronidation of 3'-azido-3'-deoxythymidine: characterization of the enzyme in human and rat liver microsomes. Arch Biochem Biophys. 1990 Sep;281(2):264–270. doi: 10.1016/0003-9861(90)90442-2. [DOI] [PubMed] [Google Scholar]
- Herman R. J., Nakamura K., Wilkinson G. R., Wood A. J. Induction of propranolol metabolism by rifampicin. Br J Clin Pharmacol. 1983 Nov;16(5):565–569. doi: 10.1111/j.1365-2125.1983.tb02218.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heubel F., Netter K. J. Atypical inductive properties of rifampicin. Biochem Pharmacol. 1979 Dec 1;28(23):3373–3378. doi: 10.1016/0006-2952(79)90075-3. [DOI] [PubMed] [Google Scholar]
- Hoensch H. P., Balzer K., Dylewizc P., Kirch W., Goebell H., Ohnhaus E. E. Effect of rifampicin treatment on hepatic drug metabolism and serum bile acids in patients with primary biliary cirrhosis. Eur J Clin Pharmacol. 1985;28(4):475–477. doi: 10.1007/BF00544371. [DOI] [PubMed] [Google Scholar]
- Jezequel A. M., Orlandi F., Tenconi L. T. Changes of the smooth endoplasmic reticulum induced by rifampicin in human and guinea-pig hepatocytes. Gut. 1971 Dec;12(12):984–987. doi: 10.1136/gut.12.12.984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loos U., Musch E., Jensen J. C., Mikus G., Schwabe H. K., Eichelbaum M. Pharmacokinetics of oral and intravenous rifampicin during chronic administration. Klin Wochenschr. 1985 Dec 2;63(23):1205–1211. doi: 10.1007/BF01733779. [DOI] [PubMed] [Google Scholar]
- McColl K. E., Thompson G. G., el Omar E., Moore M. R., Goldberg A. Porphyrin metabolism and haem biosynthesis in Gilbert's syndrome. Gut. 1987 Feb;28(2):125–130. doi: 10.1136/gut.28.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McColl K. E., Thompson G. G., el Omar E., Moore M. R., Park B. K., Brodie M. J. Effect of rifampicin on haem and bilirubin metabolism in man. Br J Clin Pharmacol. 1987 May;23(5):553–559. doi: 10.1111/j.1365-2125.1987.tb03091.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miners J. O., Mackenzie P. I. Drug glucuronidation in humans. Pharmacol Ther. 1991;51(3):347–369. doi: 10.1016/0163-7258(91)90065-t. [DOI] [PubMed] [Google Scholar]
- Ohnhaus E. E., Park B. K. Measurement of urinary 6-beta-hydroxycortisol excretion as an in vivo parameter in the clinical assessment of the microsomal enzyme-inducing capacity of antipyrine, phenobarbitone and rifampicin. Eur J Clin Pharmacol. 1979 Mar 26;15(2):139–145. doi: 10.1007/BF00609878. [DOI] [PubMed] [Google Scholar]
- Park B. K., Breckenridge A. M. Clinical implications of enzyme induction and enzyme inhibition. Clin Pharmacokinet. 1981 Jan-Feb;6(1):1–24. doi: 10.2165/00003088-198106010-00001. [DOI] [PubMed] [Google Scholar]
- Pazzucconi F., Malavasi B., Galli G., Franceschini G., Calabresi L., Sirtori C. R. Inhibition of antipyrine metabolism by low-dose contraceptives with gestodene and desogestrel. Clin Pharmacol Ther. 1991 Mar;49(3):278–284. doi: 10.1038/clpt.1991.29. [DOI] [PubMed] [Google Scholar]
- Perucca E., Grimaldi R., Frigo G. M., Sardi A., Mönig H., Ohnhaus E. E. Comparative effects of rifabutin and rifampicin on hepatic microsomal enzyme activity in normal subjects. Eur J Clin Pharmacol. 1988;34(6):595–599. doi: 10.1007/BF00615223. [DOI] [PubMed] [Google Scholar]
- Pessayre D., Mazel P. Induction and inhibition of hepatic drug metabolizing enzymes by rifampin. Biochem Pharmacol. 1976 Apr 15;25(8):943–949. doi: 10.1016/0006-2952(76)90320-8. [DOI] [PubMed] [Google Scholar]
- Prescott L. F., Critchley J. A., Balali-Mood M., Pentland B. Effects of microsomal enzyme induction on paracetamol metabolism in man. Br J Clin Pharmacol. 1981 Aug;12(2):149–153. doi: 10.1111/j.1365-2125.1981.tb01193.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Remmer H., Schoene B., Fleischmann R. A. Induction of the unspecific microsomal hydroxylase in the human liver. Drug Metab Dispos. 1973 Jan-Feb;1(1):224–230. [PubMed] [Google Scholar]
- Resetar A., Spector T. Glucuronidation of 3'-azido-3'-deoxythymidine: human and rat enzyme specificity. Biochem Pharmacol. 1989 May 1;38(9):1389–1393. doi: 10.1016/0006-2952(89)90177-9. [DOI] [PubMed] [Google Scholar]
- Shaw P. N., Houston J. B., Rowland M., Hopkins K., Thiercelin J. F., Morselli P. L. Antipyrine metabolite kinetics in healthy human volunteers during multiple dosing of phenytoin and carbamazepine. Br J Clin Pharmacol. 1985 Dec;20(6):611–618. doi: 10.1111/j.1365-2125.1985.tb05119.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strolin Benedetti M., Efthymiopoulos C., Sassella D., Moro E., Repetto M. Autoinduction of rifabutin metabolism in man. Xenobiotica. 1990 Nov;20(11):1113–1119. doi: 10.3109/00498259009046832. [DOI] [PubMed] [Google Scholar]
- Sunahara S., Nakagawa H. Metabolic study and controlled clinical trials of rifampin. Chest. 1972 Jun;61(6):526–532. doi: 10.1378/chest.61.6_supplement.526. [DOI] [PubMed] [Google Scholar]
- Teunissen M. W., Bakker W., Meerburg-Van der Torren J. E., Breimer D. D. Influence of rifampicin treatment on antipyrine clearance and metabolite formation in patients with tuberculosis. Br J Clin Pharmacol. 1984 Nov;18(5):701–706. doi: 10.1111/j.1365-2125.1984.tb02532.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toverud E. L., Boobis A. R., Brodie M. J., Murray S., Bennett P. N., Whitmarsh V., Davies D. S. Differential induction of antipyrine metabolism by rifampicin. Eur J Clin Pharmacol. 1981;21(2):155–160. doi: 10.1007/BF00637517. [DOI] [PubMed] [Google Scholar]
- Tredger J. M., Smith H. M., Powell-Jackson P. R., Davis M., Williams R. Effect of rifampicin on the mouse hepatic mixed-function oxidase system. Biochem Pharmacol. 1981 May 15;30(10):1043–1051. doi: 10.1016/0006-2952(81)90440-8. [DOI] [PubMed] [Google Scholar]
- Winsel K., Iwainsky H., Werner E., Eule H. Trennung, Bestimmung und Pharmakokinetik von Rifampicin und seinen Biotransformationsprodukten. Pharmazie. 1976;31(2):95–99. [PubMed] [Google Scholar]
