Abstract
There is increasing concern for the potential adverse health effects of human exposures to chemical mixtures. To better understand the complex interactions of chemicals within a mixture, it is essential to develop a research strategy which provides the basis for extrapolating data from single chemicals to their behavior within the chemical mixture. 1,3-Butadiene (BD) represents an interesting case study in which new data are emerging that are critical for understanding interspecies differences in carcinogenic/genotoxic response to BD. Knowledge regarding mechanisms of BD-induced carcinogenicity provides the basis for assessing the potential effects of mixtures containing BD. BD is a multisite carcinogen in B6C3F1 mice and Sprague-Dawley rats. Mice exhibit high sensitivity relative to the rat to BD-induced tumorigenesis. Since it is likely that BD requires metabolic activation to mutagenic reactive epoxides that ultimately play a role in carcinogenicity of the chemical, a quantitative understanding of the balance of activation and inactivation is essential for improving our understanding and assessment of human risk following exposure to BD and chemical mixtures containing BD. Transgenic mice exposed to 625 ppm BD for 6 hr/day for 5 days exhibited significant mutagenicity in the lung, a target organ for the carcinogenic effect of BD in mice. In vitro studies designed to assess interspecies differences in the activation of BD and inactivation of BD epoxides reveal that significant differences exist among mice, rats, and humans. In general, the overall activation/detoxication ratio for BD metabolism was approximately 10-fold higher in mice compared to rats or humans.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen M. E., Gargas M. L., Clewell H. J., 3rd, Severyn K. M. Quantitative evaluation of the metabolic interactions between trichloroethylene and 1,1-dichloroethylene in vivo using gas uptake methods. Toxicol Appl Pharmacol. 1987 Jun 30;89(2):149–157. doi: 10.1016/0041-008x(87)90035-4. [DOI] [PubMed] [Google Scholar]
- Bolt H. M., Filser J. G., Störmer F. Inhalation pharmacokinetics based on gas uptake studies. V. Comparative pharmacokinetics of ethylene and 1,3-butadiene in rats. Arch Toxicol. 1984 Oct;55(4):213–218. doi: 10.1007/BF00341013. [DOI] [PubMed] [Google Scholar]
- Bond J. A., Dahl A. R., Henderson R. F., Dutcher J. S., Mauderly J. L., Birnbaum L. S. Species differences in the disposition of inhaled butadiene. Toxicol Appl Pharmacol. 1986 Jul;84(3):617–627. doi: 10.1016/0041-008x(86)90268-1. [DOI] [PubMed] [Google Scholar]
- Brunnemann K. D., Kagan M. R., Cox J. E., Hoffmann D. Analysis of 1,3-butadiene and other selected gas-phase components in cigarette mainstream and sidestream smoke by gas chromatography-mass selective detection. Carcinogenesis. 1990 Oct;11(10):1863–1868. doi: 10.1093/carcin/11.10.1863. [DOI] [PubMed] [Google Scholar]
- Csanády G. A., Guengerich F. P., Bond J. A. Comparison of the biotransformation of 1,3-butadiene and its metabolite, butadiene monoepoxide, by hepatic and pulmonary tissues from humans, rats and mice. Carcinogenesis. 1992 Jul;13(7):1143–1153. doi: 10.1093/carcin/13.7.1143. [DOI] [PubMed] [Google Scholar]
- Cunningham M. J., Choy W. N., Arce G. T., Rickard L. B., Vlachos D. A., Kinney L. A., Sarrif A. M. In vivo sister chromatid exchange and micronucleus induction studies with 1,3-butadiene in B6C3F1 mice and Sprague-Dawley rats. Mutagenesis. 1986 Nov;1(6):449–452. [PubMed] [Google Scholar]
- Dahl A. R., Sun J. D., Birnbaum L. S., Bond J. A., Griffith W. C., Jr, Mauderly J. L., Muggenburg B. A., Sabourin P. J., Henderson R. F. Toxicokinetics of inhaled 1,3-butadiene in monkeys: comparison to toxicokinetics in rats and mice. Toxicol Appl Pharmacol. 1991 Aug;110(1):9–19. doi: 10.1016/0041-008x(91)90285-m. [DOI] [PubMed] [Google Scholar]
- Duverger M., Lambotte M., Malvoisin E., de Meester C., Poncelet F., Mercier M. Metabolic activation and mutagenicity of 4 vinylic monomers (vinyl chloride, styrene, acrylonitrile, butadiene). Toxicol Eur Res. 1981 May;3(3):131–140. [PubMed] [Google Scholar]
- Gargas M. L., Andersen M. E., Clewell H. J., 3rd A physiologically based simulation approach for determining metabolic constants from gas uptake data. Toxicol Appl Pharmacol. 1986 Dec;86(3):341–352. doi: 10.1016/0041-008x(86)90361-3. [DOI] [PubMed] [Google Scholar]
- Goodrow T., Reynolds S., Maronpot R., Anderson M. Activation of K-ras by codon 13 mutations in C57BL/6 X C3H F1 mouse tumors induced by exposure to 1,3-butadiene. Cancer Res. 1990 Aug 1;50(15):4818–4823. [PubMed] [Google Scholar]
- Gossen J. A., de Leeuw W. J., Tan C. H., Zwarthoff E. C., Berends F., Lohman P. H., Knook D. L., Vijg J. Efficient rescue of integrated shuttle vectors from transgenic mice: a model for studying mutations in vivo. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7971–7975. doi: 10.1073/pnas.86.20.7971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinners R. G., Burkart J. K., Punte C. L. Animal inhalation exposure chambers. Arch Environ Health. 1968 Feb;16(2):194–206. doi: 10.1080/00039896.1968.10665043. [DOI] [PubMed] [Google Scholar]
- Huff J. E., Melnick R. L., Solleveld H. A., Haseman J. K., Powers M., Miller R. A. Multiple organ carcinogenicity of 1,3-butadiene in B6C3F1 mice after 60 weeks of inhalation exposure. Science. 1985 Feb 1;227(4686):548–549. doi: 10.1126/science.3966163. [DOI] [PubMed] [Google Scholar]
- Kreiling R., Laib R. J., Filser J. G., Bolt H. M. Species differences in butadiene metabolism between mice and rats evaluated by inhalation pharmacokinetics. Arch Toxicol. 1986 Apr;58(4):235–238. doi: 10.1007/BF00297112. [DOI] [PubMed] [Google Scholar]
- Kreuzer P. E., Kessler W., Welter H. F., Baur C., Filser J. G. Enzyme specific kinetics of 1,2-epoxybutene-3 in microsomes and cytosol from livers of mouse, rat, and man. Arch Toxicol. 1991;65(1):59–67. doi: 10.1007/BF01973504. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laib R. J., Tucholski M., Filser J. G., Csanády G. A. Pharmacokinetic interaction between 1,3-butadiene and styrene in Sprague-Dawley rats. Arch Toxicol. 1992;66(5):310–314. doi: 10.1007/BF01973624. [DOI] [PubMed] [Google Scholar]
- Medinsky M. A., Sabourin P. J., Lucier G., Birnbaum L. S., Henderson R. F. A physiological model for simulation of benzene metabolism by rats and mice. Toxicol Appl Pharmacol. 1989 Jun 15;99(2):193–206. doi: 10.1016/0041-008x(89)90002-1. [DOI] [PubMed] [Google Scholar]
- Melnick R. L., Huff J., Chou B. J., Miller R. A. Carcinogenicity of 1,3-butadiene in C57BL/6 x C3H F1 mice at low exposure concentrations. Cancer Res. 1990 Oct 15;50(20):6592–6599. [PubMed] [Google Scholar]
- Northrop D. B. Fitting enzyme-kinetic data to V/K. Anal Biochem. 1983 Jul 15;132(2):457–461. doi: 10.1016/0003-2697(83)90034-9. [DOI] [PubMed] [Google Scholar]
- OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
- Owen P. E., Glaister J. R., Gaunt I. F., Pullinger D. H. Inhalation toxicity studies with 1,3-butadiene. 3. Two year toxicity/carcinogenicity study in rats. Am Ind Hyg Assoc J. 1987 May;48(5):407–413. doi: 10.1080/15298668791384959. [DOI] [PubMed] [Google Scholar]
- Pelz N., Dempster N. M., Shore P. R. Analysis of low molecular weight hydrocarbons including 1,3-butadiene in engine exhaust gases using an aluminum oxide porous-layer open-tubular fused-silica column. J Chromatogr Sci. 1990 May;28(5):230–235. doi: 10.1093/chromsci/28.5.230. [DOI] [PubMed] [Google Scholar]
- Poncelet F., de Meester C., Duverger-van Bogaert M., Lambotte-Vandepaer M., Roberfroid M., Mercier M. Influence of experimental factors on the mutagenicity of vinylic monomers. Arch Toxicol Suppl. 1980;4:63–66. doi: 10.1007/978-3-642-67729-8_14. [DOI] [PubMed] [Google Scholar]
- Ramsey J. C., Andersen M. E. A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicol Appl Pharmacol. 1984 Mar 30;73(1):159–175. doi: 10.1016/0041-008x(84)90064-4. [DOI] [PubMed] [Google Scholar]
- Recio L., Osterman-Golkar S., Csanády G. A., Turner M. J., Myhr B., Moss O., Bond J. A. Determination of mutagenicity in tissues of transgenic mice following exposure to 1,3-butadiene and N-ethyl-N-nitrosourea. Toxicol Appl Pharmacol. 1992 Nov;117(1):58–64. doi: 10.1016/0041-008x(92)90217-g. [DOI] [PubMed] [Google Scholar]
- Ryan D. E., Koop D. R., Thomas P. E., Coon M. J., Levin W. Evidence that isoniazid and ethanol induce the same microsomal cytochrome P-450 in rat liver, an isozyme homologous to rabbit liver cytochrome P-450 isozyme 3a. Arch Biochem Biophys. 1986 May 1;246(2):633–644. doi: 10.1016/0003-9861(86)90319-x. [DOI] [PubMed] [Google Scholar]
- Shugaev B. B. Concentrations of hydrocarbons in tissues as a measure of toxicity. Arch Environ Health. 1969 Jun;18(6):878–882. doi: 10.1080/00039896.1969.10665509. [DOI] [PubMed] [Google Scholar]
- Sisk S. C., Pluta L. J., Bond J. A., Recio L. Molecular analysis of lacI mutants from bone marrow of B6C3F1 transgenic mice following inhalation exposure to 1,3-butadiene. Carcinogenesis. 1994 Mar;15(3):471–477. doi: 10.1093/carcin/15.3.471. [DOI] [PubMed] [Google Scholar]
- Tice R. R., Boucher R., Luke C. A., Shelby M. D. Comparative cytogenetic analysis of bone marrow damage induced in male B6C3F1 mice by multiple exposures to gaseous 1,3-butadiene. Environ Mutagen. 1987;9(3):235–250. doi: 10.1002/em.2860090303. [DOI] [PubMed] [Google Scholar]
- de Meester C., Poncelet F., Roberfroid M., Mercier M. The mutagenicity of butadiene towards Salmonella typhimurium. Toxicol Lett. 1980 Aug;6(3):125–130. doi: 10.1016/0378-4274(80)90179-4. [DOI] [PubMed] [Google Scholar]