Abstract
Peroxidative oxidations of chemical carcinogens including N-substituted aryl compounds could result in their metabolic activation because the products react with cellular molecules and lead to cytotoxicity, mutagenicity, and carcinogenicity. In vivo, peroxidative activities are chiefly of neutrophilic leukocyte origin. Neutrophils may be attracted to the site(s) of exposure to carcinogen and, via phagocytosis and respiratory burst, release oxidants that catalyze carcinogen activation and/or cause DNA damage. Our studies, presented herein, concern oxidations of carcinogenic N-arylhydroxamic acids, N-hydroxy-N-2-fluorenylacetamide (N-OH-2-FAA), and N-hydroxy-N-2-fluorenylbenzamide (N-OH-2-FBA), by enzymatic and chemical systems simulating those of neutrophils, myeloperoxidase and hydrogen peroxide (H2O2) +/- halide, and hypohalous acid and halide at the physiologic concentrations (0.1 M Cl- and/or 0.1 mM Br-) and the pH (4-6.5) of phagocytosis. Studies also concern oxidations of the hydroxamic acids by rat peritoneal neutrophils stimulated to undergo respiratory burst and release myeloperoxidase in medium-containing 0.14 M Cl- +/- 0.1 mM Br-. The metabolites formed in the presence of exogenous H2O2 are consistent with two peroxidative mechanisms: one electron-oxidation to a radical that dismutates to equimolar 2-nitrosofluorene (2-NOF) and the ester of the respective hydroxamic acid and halide-dependent oxidative cleavage, especially efficient in the presence of Br-, to equimolar 2-NOF and the respective acyl moiety. 2-NOF and the esters undergo further enzymatic and nonenzymatic conversions to unreactive products and/or may bind to cellular macromolecules. The results suggest that peroxidative metabolism of N-arylhydroxamic acids by neutrophils, yielding the potent direct mutagen 2-NOF and the electrophilic esters, occurs in vivo and is involved in the activation and thus local tumorigenicities of the hydroxamic acids at the site(s) of application.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartsch H., Hecker E. On the metabolic activation of the carcinogen N-hydroxy-N-2-acetylaminofluorene. 3. Oxidation with horseradish peroxidase to yield 2-nitrosofluorene and N-acetoxy-N-2-acetylaminofluorene. Biochim Biophys Acta. 1971 Jun 22;237(3):567–578. doi: 10.1016/0304-4165(71)90277-7. [DOI] [PubMed] [Google Scholar]
- Bartsch H., Miller J. A., Miller E. C. N-acetoxy-N-acetylaminoarenes and nitrosoarenes. One-electron non-enzymatic and enzymatic oxidation products of various carcinogenic aromatic acethydroxamic acids. Biochim Biophys Acta. 1972 Jun 26;273(1):40–51. doi: 10.1016/0304-4165(72)90189-4. [DOI] [PubMed] [Google Scholar]
- Bartsch H., Traut M., Hecker E. On the metabolic activation of N-hydroxy-N-2-acetylamino-fluorene. II. Simultaneous formation of 2-nitrosofluorene and N-acetoxy-N-2-acetylaminofluorene from N-hydroxy-N-2-acetylaminofluorene via a free radical intermediate. Biochim Biophys Acta. 1971 Jun 22;237(3):556–566. doi: 10.1016/0304-4165(71)90276-5. [DOI] [PubMed] [Google Scholar]
- Boyd J. A., Eling T. E. Evidence for a one-electron mechanism of 2-aminofluorene oxidation by prostaglandin H synthase and horseradish peroxidase. J Biol Chem. 1984 Nov 25;259(22):13885–13896. [PubMed] [Google Scholar]
- Corbett M. D., Corbett B. R., Hannothiaux M. H., Quintana S. J. Metabolic activation and nucleic acid binding of acetaminophen and related arylamine substrates by the respiratory burst of human granulocytes. Chem Res Toxicol. 1989 Jul-Aug;2(4):260–266. doi: 10.1021/tx00010a008. [DOI] [PubMed] [Google Scholar]
- Corbett M. D., Corbett B. R., Hannothiaux M. H., Quintana S. J. The covalent binding of acetaminophen to cellular nucleic acids as the result of the respiratory burst of neutrophils derived from the HL-60 cell line. Toxicol Appl Pharmacol. 1992 Mar;113(1):80–86. doi: 10.1016/0041-008x(92)90011-g. [DOI] [PubMed] [Google Scholar]
- Corbett M. D., Corbett B. R. Nucleic acid binding of arylamines during the respiratory burst of human granulocytes. Chem Res Toxicol. 1988 Nov-Dec;1(6):356–363. doi: 10.1021/tx00006a006. [DOI] [PubMed] [Google Scholar]
- Corbett M. D., Hannothiaux M. H., Corbett B. R., Quintana S. J. A comparison of the HL-60 cell line and human granulocytes to effect the bioactivation of arylamines and related xenobiotics. The binding of 2-aminofluorene to nucleic acids as the result of the respiratory burst. Chem Biol Interact. 1991;78(1):33–54. doi: 10.1016/0009-2797(91)90101-c. [DOI] [PubMed] [Google Scholar]
- Cribb A. E., Miller M., Tesoro A., Spielberg S. P. Peroxidase-dependent oxidation of sulfonamides by monocytes and neutrophils from humans and dogs. Mol Pharmacol. 1990 Nov;38(5):744–751. [PubMed] [Google Scholar]
- Deimann W. Endogenous peroxidase activity in mononuclear phagocytes. Prog Histochem Cytochem. 1984;15(2):1–58. doi: 10.1016/s0079-6336(84)80003-0. [DOI] [PubMed] [Google Scholar]
- Doerge D. R., Corbett M. D. Peroxygenation mechanism for chloroperoxidase-catalyzed N-oxidation of arylamines. Chem Res Toxicol. 1991 Sep-Oct;4(5):556–560. doi: 10.1021/tx00023a011. [DOI] [PubMed] [Google Scholar]
- Eling T. E., Thompson D. C., Foureman G. L., Curtis J. F., Hughes M. F. Prostaglandin H synthase and xenobiotic oxidation. Annu Rev Pharmacol Toxicol. 1990;30:1–45. doi: 10.1146/annurev.pa.30.040190.000245. [DOI] [PubMed] [Google Scholar]
- Kanofsky J. R., Hoogland H., Wever R., Weiss S. J. Singlet oxygen production by human eosinophils. J Biol Chem. 1988 Jul 15;263(20):9692–9696. [PubMed] [Google Scholar]
- Krauss R. S., Angerman-Stewart J., Eling T. E., Dooley K. L., Kadlubar F. F. The formation of 2-aminofluorene-DNA adducts in vivo: evidence for peroxidase-mediated activation. J Biochem Toxicol. 1989 Summer;4(2):111–117. doi: 10.1002/jbt.2570040207. [DOI] [PubMed] [Google Scholar]
- Krauss R. S., Eling T. E. Formation of unique arylamine:DNA adducts from 2-aminofluorene activated by prostaglandin H synthase. Cancer Res. 1985 Apr;45(4):1680–1686. [PubMed] [Google Scholar]
- Malejka-Giganti D., Ritter C. L., Decker R. W. Activation of the carcinogen N-hydroxy-N-(2-fluorenyl)benzamide via chemical and enzymatic oxidations. Comparison to oxidations of the structural analogue N-hydroxy-N-(2-fluorenyl)acetamide. Chem Res Toxicol. 1992 Jul-Aug;5(4):520–527. doi: 10.1021/tx00028a010. [DOI] [PubMed] [Google Scholar]
- Malejka-Giganti D., Ritter C. L., Willmott L. D. Metabolism of the carcinogen N-hydroxy-N-2-fluorenylacetamide by rat peritoneal neutrophils. Carcinogenesis. 1993 Mar;14(3):341–346. doi: 10.1093/carcin/14.3.341. [DOI] [PubMed] [Google Scholar]
- Marnett L. J., Wlodawer P., Samuelsson B. Co-oxygenation of organic substrates by the prostaglandin synthetase of sheep vesicular gland. J Biol Chem. 1975 Nov 10;250(21):8510–8517. [PubMed] [Google Scholar]
- Misik V., Mak I. T., Weglicki W. B. Formation of superoxide in the reaction of photolytically altered nifedipine--a nitroso compound--with unsaturated membrane lipids. Chem Biol Interact. 1992 Aug 14;83(2):97–105. doi: 10.1016/0009-2797(92)90039-n. [DOI] [PubMed] [Google Scholar]
- Ritter C. L., Malejka-Giganti D. Oxidations of the carcinogen N-hydroxy-N-(2-fluorenyl)acetamide by enzymatically or chemically generated oxidants of chloride and bromide. Chem Res Toxicol. 1989 Sep-Oct;2(5):325–333. doi: 10.1021/tx00011a010. [DOI] [PubMed] [Google Scholar]
- Sammartano L. J., Malejka-Giganti D. Interaction of C-nitroso aromatics with polyunsaturated fatty acids: route to lipid peroxidation. Chem Biol Interact. 1991;77(1):63–79. doi: 10.1016/0009-2797(91)90006-s. [DOI] [PubMed] [Google Scholar]
- Scribner J. D. Conversion of the carcinogen n-acetoxy-2-acetamidofluorene to 4-hydroxy-2-acetamidofluorene. J Am Chem Soc. 1977 Oct 26;99(22):7383–7384. doi: 10.1021/ja00464a062. [DOI] [PubMed] [Google Scholar]
- Shen J. H., Wegenke M., Wolff T. Capability of human blood cells to form the DNA adduct, C8-(N2-aminofluorenyl)-deoxyguanosine-3'-5'-diphosphate from 2-aminofluorene. Carcinogenesis. 1990 Aug;11(8):1441–1444. doi: 10.1093/carcin/11.8.1441. [DOI] [PubMed] [Google Scholar]
- Shurin S. B. Pathologic states associated with activation of eosinophils and with eosinophilia. Hematol Oncol Clin North Am. 1988 Mar;2(1):171–179. [PubMed] [Google Scholar]
- Smith B. J., Curtis J. F., Eling T. E. Bioactivation of xenobiotics by prostaglandin H synthase. Chem Biol Interact. 1991;79(3):245–264. doi: 10.1016/0009-2797(91)90108-j. [DOI] [PubMed] [Google Scholar]
- Tsuruta Y., Subrahmanyam V. V., Marshall W., O'Brien P. J. Peroxidase-mediated irreversible binding of arylamine carcinogens to DNA in intact polymorphonuclear leukocytes activated by a tumor promoter. Chem Biol Interact. 1985 Feb-Apr;53(1-2):25–35. doi: 10.1016/s0009-2797(85)80081-8. [DOI] [PubMed] [Google Scholar]
- Uetrecht J. P., Zahid N. N-Chlorination and oxidation of procainamide by myeloperoxidase: toxicological implications. Chem Res Toxicol. 1991 Mar-Apr;4(2):218–222. doi: 10.1021/tx00020a015. [DOI] [PubMed] [Google Scholar]
- Uetrecht J. Mechanism of hypersensitivity reactions: proposed involvement of reactive metabolites generated by activated leukocytes. Trends Pharmacol Sci. 1989 Nov;10(11):463–467. doi: 10.1016/S0165-6147(89)80012-4. [DOI] [PubMed] [Google Scholar]
- Uetrecht J., Zahid N., Rubin R. Metabolism of procainamide to a hydroxylamine by human neutrophils and mononuclear leukocytes. Chem Res Toxicol. 1988 Jan-Feb;1(1):74–78. doi: 10.1021/tx00001a013. [DOI] [PubMed] [Google Scholar]
- Uetrecht J., Zahid N., Shear N. H., Biggar W. D. Metabolism of dapsone to a hydroxylamine by human neutrophils and mononuclear cells. J Pharmacol Exp Ther. 1988 Apr;245(1):274–279. [PubMed] [Google Scholar]
- Weiss S. J., Test S. T., Eckmann C. M., Roos D., Regiani S. Brominating oxidants generated by human eosinophils. Science. 1986 Oct 10;234(4773):200–203. doi: 10.1126/science.3018933. [DOI] [PubMed] [Google Scholar]
- Yamazoe Y., Miller D. W., Weis C. C., Dooley K. L., Zenser T. V., Beland F. A., Kadlubar F. F. DNA adducts formed by ring-oxidation of the carcinogen 2-naphthylamine with prostaglandin H synthase in vitro and in the dog urothelium in vivo. Carcinogenesis. 1985 Sep;6(9):1379–1387. doi: 10.1093/carcin/6.9.1379. [DOI] [PubMed] [Google Scholar]
- Yamazoe Y., Roth R. W., Kadlubar F. F. Reactivity of benzidine diimine with DNA to form N-(deoxyguanosin-8-yl)-benzidine. Carcinogenesis. 1986 Jan;7(1):179–182. doi: 10.1093/carcin/7.1.179. [DOI] [PubMed] [Google Scholar]
- Yamazoe Y., Zenser T. V., Miller D. W., Kadlubar F. F. Mechanism of formation and structural characterization of DNA adducts derived from peroxidative activation of benzidine. Carcinogenesis. 1988 Sep;9(9):1635–1641. doi: 10.1093/carcin/9.9.1635. [DOI] [PubMed] [Google Scholar]
- van Leeuwen F. X., Sangster B. The toxicology of bromide ion. Crit Rev Toxicol. 1987;18(3):189–213. doi: 10.3109/10408448709089861. [DOI] [PubMed] [Google Scholar]
