Abstract
Among the various methods for predicting carcinogenicity from a battery of short-term tests (STTs), the carcinogenicity prediction and battery selection (CPBS) procedure is the most prominent. A major assumption of CPBS is that the STTs used in the prediction are conditionally independent. Results of recent National Toxicology Program studies of four commonly used in vitro STTs contradict this assumption, thereby necessitating modification of CPBS to accommodate dependencies. This is accomplished via log-linear modeling, which then also yields an important dividend: standard errors for the predicted probabilities of carcinogenicity.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chankong V., Haimes Y. Y., Rosenkranz H. S., Pet-Edwards J. The carcinogenicity prediction and battery selection (CPBS) method: a Bayesian approach. Mutat Res. 1985 May;153(3):135–166. doi: 10.1016/0165-1110(85)90011-9. [DOI] [PubMed] [Google Scholar]
- Denniston C. Screening program theory: decision functions and protocols. Environ Mutagen. 1985;7(1):53–72. doi: 10.1002/em.2860070103. [DOI] [PubMed] [Google Scholar]
- Ennever F. K., Rosenkranz H. S. Application of the carcinogenicity prediction and battery selection method to recent National Toxicology Program short-term test data. Environ Mol Mutagen. 1989;13(4):332–338. doi: 10.1002/em.2850130409. [DOI] [PubMed] [Google Scholar]
- Ennever F. K., Rosenkranz H. S. Prediction of carcinogenic potency by short-term genotoxicity tests. Mutagenesis. 1987 Jan;2(1):39–44. doi: 10.1093/mutage/2.1.39. [DOI] [PubMed] [Google Scholar]
- Ennever F. K., Rosenkranz H. S. Short-term test results for NTP noncarcinogens: an alternate, more predictive battery. Environ Mutagen. 1986;8(6):849–865. doi: 10.1002/em.2860080608. [DOI] [PubMed] [Google Scholar]
- Heinze J. E., Poulsen N. K. The optimal design of batteries of short-term tests for detecting carcinogens. Mutat Res. 1983 May-Jun;117(3-4):259–269. doi: 10.1016/0165-1218(83)90126-x. [DOI] [PubMed] [Google Scholar]
- Kuroki T., Matsushima T. Performance of short-term tests for detection of human carcinogens. Mutagenesis. 1987 Jan;2(1):33–37. doi: 10.1093/mutage/2.1.33. [DOI] [PubMed] [Google Scholar]
- Lave L. B., Omenn G. S. Cost-effectiveness of short-term tests for carcinogenicity. Nature. 1986 Nov 6;324(6092):29–34. doi: 10.1038/324029a0. [DOI] [PubMed] [Google Scholar]
- Pet-Edwards J., Chankong V., Rosenkranz H. S., Haimes Y. Y. Application of the carcinogenicity prediction and battery selection (CPBS) method to the Gene-Tox data base. Mutat Res. 1985 May;153(3):187–200. doi: 10.1016/0165-1110(85)90013-2. [DOI] [PubMed] [Google Scholar]
- Purchase I. F., Longstaff E., Ashby J., Styles J. A., Anderson D., Lefevre P. A., Westwood F. R. An evaluation of 6 short-term tests for detecting organic chemical carcinogens. Br J Cancer. 1978 Jun;37(6):873–903. doi: 10.1038/bjc.1978.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenkranz H. S., Klopman G., Chankong V., Pet-Edwards J., Haimes Y. Y. Prediction of environmental carcinogens: a strategy for the mid-1980s. Environ Mutagen. 1984;6(2):231–258. doi: 10.1002/em.2860060212. [DOI] [PubMed] [Google Scholar]
- Tennant R. W., Margolin B. H., Shelby M. D., Zeiger E., Haseman J. K., Spalding J., Caspary W., Resnick M., Stasiewicz S., Anderson B. Prediction of chemical carcinogenicity in rodents from in vitro genetic toxicity assays. Science. 1987 May 22;236(4804):933–941. doi: 10.1126/science.3554512. [DOI] [PubMed] [Google Scholar]
- Zeiger E., Haseman J. K., Shelby M. D., Margolin B. H., Tennant R. W. Evaluation of four in vitro genetic toxicity tests for predicting rodent carcinogenicity: confirmation of earlier results with 41 additional chemicals. Environ Mol Mutagen. 1990;16 (Suppl 18):1–14. doi: 10.1002/em.2850160502. [DOI] [PubMed] [Google Scholar]
